三個連續(xù)的偶數(shù)中,n為中間的一個,則這三個偶數(shù)的和為     

3n

解析試題分析:根據(jù)連續(xù)的偶數(shù)的性質(zhì)即可列式求解.
由題意得這三個偶數(shù)的和為
考點:整式的化簡
點評:解答本題的關鍵是熟練掌握連續(xù)的偶數(shù)的差為2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們已經(jīng)知道了一些特殊的勾股數(shù),如三個連續(xù)整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;由此發(fā)現(xiàn)勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)如果a、b、c是一組勾股數(shù),即滿足a2+b2=c2,求證:ka、kb、kc(k為正整數(shù))也是一組勾股數(shù).
(2)另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),如
①公式a=m2-n2,b=2mn,c=m2+n2(m、n為整數(shù),m>n,m>1)
②世界上第一次給出的勾股數(shù)的公式,被收集在《九章算術》中a=
1
2
(m2-n2)
,b=mn,c=
1
2
(m2+n2)
(m、n為正整數(shù),m>n)
③公元前427-公元前347,由柏拉圖提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n為整數(shù))
④畢達哥拉斯學派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù)),請你在上述的四個公式中選擇一種加以證明,滿足公式的a、b、c是一組勾股數(shù)
(3)請根據(jù)你在(2)中所選的公式寫出一組勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三個連續(xù)的偶數(shù)中,是最小的一個,這三個數(shù)的和為   

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年遼寧省建平縣七年級上學期期中考試數(shù)學試卷(解析版) 題型:填空題

三個連續(xù)的偶數(shù)中,n為中間的一個,則這三個偶數(shù)的和為     

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們已經(jīng)知道了一些特殊的勾股數(shù),如三個連續(xù)整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;由此發(fā)現(xiàn)勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)如果a、b、c是一組勾股數(shù),即滿足a2+b2=c2,求證:ka、kb、kc(k為正整數(shù))也是一組勾股數(shù).
(2)另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),如
①公式a=m2-n2,b=2mn,c=m2+n2(m、n為整數(shù),m>n,m>1)
②世界上第一次給出的勾股數(shù)的公式,被收集在《九章算術》中a=
1
2
(m2-n2)
,b=mn,c=
1
2
(m2+n2)
(m、n為正整數(shù),m>n)
③公元前427-公元前347,由柏拉圖提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n為整數(shù))
④畢達哥拉斯學派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù)),請你在上述的四個公式中選擇一種加以證明,滿足公式的a、b、c是一組勾股數(shù)
(3)請根據(jù)你在(2)中所選的公式寫出一組勾股數(shù).

查看答案和解析>>

同步練習冊答案