求二次函數(shù)y=-
12
x2+3x-2
的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)和最大值.
分析:根據(jù)a的符號(hào)判斷拋物線的開口方向;將拋物線化為頂點(diǎn)式后即可確定其頂點(diǎn)坐標(biāo)和對(duì)稱軸及最值.
解答:解:∵二次函數(shù)y=-
1
2
x2+3x-2
中二次項(xiàng)系數(shù)為:-
1
2
<0,
∴開口向下,有最大值;
y=-
1
2
x2+3x-2
=-
1
2
(x2-6x++9-9+4)=-
1
2
(x-3)2+
5
2
,
∴開口向下,對(duì)稱軸為x=3,頂點(diǎn)坐標(biāo)為(3,
,5
2
),有最大值
5
2
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是將二次函數(shù)的一般形式轉(zhuǎn)化為頂點(diǎn)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最小?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為y=2(x+
a
x
)(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+
1
x
(x>0)的圖象和性質(zhì).精英家教網(wǎng)
①填寫下表,畫出函數(shù)的圖象;
x
1
4
1
3
1
2
1 2 3 4
y              
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時(shí),除了通過觀察圖象,還可以通過配方得到.請(qǐng)你通過配方求函數(shù)y=x+
1
x
(x>0)的最小值.

【解決問題】
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•營(yíng)口一模)[提出問題]:已知矩形的面積為1,當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)最小?最小值是多少?
[建立數(shù)學(xué)模型]:設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)關(guān)系式為y=x+
1
x
(x>0).
[探索研究]:我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+(x>0)的圖象和性質(zhì).
①填寫下表,畫出函數(shù)的圖象;
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出當(dāng)自變量x取何值時(shí),函數(shù)y=x+
1
x
(x>0)有最小值;
③我們?cè)谡n堂上求二次函數(shù)最大(小)值時(shí),除了通過觀察圖象,還可以通過配方得到.請(qǐng)你通過配方求函數(shù)y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法求二次函數(shù)y=-
1
2
 x2-x+
3
2
的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求二次函數(shù)y=2x2+7x-12的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用配方法求二次函數(shù)y=-
1
2
 x2-x+
3
2
的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案