A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=$\frac{1}{2}$BC,得到AE=$\frac{1}{2}$BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到S?ABCD=AB•AC,故②正確,根據(jù)AB=$\frac{1}{2}$BC,OB=$\frac{1}{2}$BD,且BD>BC,得到AB≠OB,故③錯誤;根據(jù)題意得出故④不正確;即可得出結果.
解答 解:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等邊三角形,
∴AE=AB=BE,
∵AB=$\frac{1}{2}$BC,
∴AE=$\frac{1}{2}$BC,
∴∠BAC=90°,
∴∠CAD=30°,故①正確;
∵AC⊥AB,
∴S?ABCD=AB•AC,故②正確,
∵AB=$\frac{1}{2}$BC,OB=$\frac{1}{2}$BD,
∵BD>BC,
∴AB≠OB,故③錯誤;④不正確;
∵若∠COD=60°,
則∠ADO=60°-30°=30°=∠CAD,
∴OA=OD,
∴AC=BD,矛盾,
故④不正確.
故選:B.
點評 本題考查了平行四邊形的性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì),平行四邊形的面積公式,熟練掌握性質(zhì)定理和判定定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | -5 | B. | 19-4k | C. | 13 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com