18.如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,∠A1BC的平分線與∠A1CD的平分線交于點(diǎn)A2,…∠An-1BC的平行線與∠An-1CD的平分線交于點(diǎn)An,設(shè)∠A=θ,則∠An=$\frac{θ}{{2}^{n}}$.

分析 根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根據(jù)角平分線的定義可得∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,然后整理得到∠A1=$\frac{1}{2}$∠A,同理可得∠A2=$\frac{1}{2}$∠A1,從而判斷出后一個(gè)角是前一個(gè)角的$\frac{1}{2}$,然后表示出,∠An即可.

解答 解:由三角形的外角性質(zhì)得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,
∵∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,
∴∠A1BC=$\frac{1}{2}$∠ABC,∠A1CD=$\frac{1}{2}$∠ACD,
∴∠A1+∠A1BC=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+∠A1BC,
∴∠A1=$\frac{1}{2}$∠A,
同理可得∠A2=$\frac{1}{2}$∠A1=$\frac{θ}{4}$=$\frac{θ}{{2}^{2}}$,
…,
∠An=$\frac{θ}{{2}^{n}}$.
故答案為:$\frac{θ}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查了三角形的內(nèi)角和定理,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)并準(zhǔn)確識(shí)圖然后求出后一個(gè)角是前一個(gè)角的$\frac{1}{2}$是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.先化簡(jiǎn),再求值:$\frac{a}{{a}^{2}-^{2}}-\frac{{a}^{2}-^{2}}$,其中a=2,b=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.趙州橋的橋拱是近似的拋物線形,建立如圖所示的平面直角坐標(biāo)系,其函數(shù)的關(guān)系式為y=-$\frac{1}{25}$x2,當(dāng)水面離橋拱頂?shù)母叨菵O是2m時(shí),這時(shí)水面寬度AB為( 。
A.-10mB.-5$\sqrt{2}$mC.5$\sqrt{2}$mD.10$\sqrt{2}$m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)A(0,-2),B(1,0)兩點(diǎn),與反比例函數(shù)y=$\frac{m}{x}$(m≠0)的圖象在第一象限內(nèi)交于點(diǎn)M,若△OBM的面積是2.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)P是x軸正半軸上一點(diǎn)且∠AMP=90°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)正n邊形的半徑為R,邊心距為r,如果我們將$\frac{R}{r}$的值稱為正n邊形的“接近度”,那么正六邊形的“接近度”是$\frac{{2\sqrt{3}}}{3}$(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.為了解九(1)班學(xué)生的體溫情況,對(duì)這個(gè)班所有學(xué)生測(cè)量了一次體溫(單位:℃),小明將測(cè)量結(jié)果繪制成如下統(tǒng)計(jì)表和如圖所示的扇形統(tǒng)計(jì)圖.下列說(shuō)法錯(cuò)誤的是( 。
體溫(℃)36.136.236.336.436.536.6
人數(shù)(人)48810x2
A.這些體溫的眾數(shù)是8B.這些體溫的中位數(shù)是36.35
C.這個(gè)班有40名學(xué)生D.x=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,拋物線y=-$\frac{5}{4}$x2+$\frac{17}{4}$x+1與y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)
(1)求直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng).過(guò)點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)當(dāng)線段MN最長(zhǎng)時(shí),求出△ABN的面積;
(4)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM、BN.當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.方程$\sqrt{2x+3}$=2的解是$x=\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知銳角△ABC中,以AB,AC為邊向外作正方形ABDE和正方形ACFG,連結(jié)CE、BG,交點(diǎn)為O,求證:(1)EC=BG;(2)EC⊥BG.

查看答案和解析>>

同步練習(xí)冊(cè)答案