如圖,直線y=0.25x與雙曲線y=相交于A、B兩點(diǎn),BC⊥x軸于點(diǎn)C(-4,0)。
(1)求A、B兩點(diǎn)的坐標(biāo)及雙曲線的解析式;
(2)若經(jīng)過點(diǎn)A的直線與x軸的正半軸交于點(diǎn)D,與y軸的正半軸交于點(diǎn)E,且△AOE的面積為10,求CD的長。
【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
【分析】(1)求出B的橫坐標(biāo),代入y=x求出y,即可得出B的坐標(biāo),把B的坐標(biāo)代入y=求出y=,解方程組即可得出A的坐標(biāo);
(2)設(shè)OE=x,OD=y,由三角形的面積公式得出xy-y·1=10,x·4=10,求出x、y,即可得出OD=5,求出OC,相加即可.
【解答】(1)∵BC⊥x,C(-4,0),
∴B的橫坐標(biāo)是-4,代入y=x得:y=-1,
∴B的坐標(biāo)是(-4,-1),
∵把B的坐標(biāo)代入y=得:k=4,
∴y=,
∵解方程組得: ,,
∴A的坐標(biāo)是(4,1),
即A(4,1),B(-4,-1),反比例函數(shù)的解析式是y=.
(2)設(shè)OE=x,OD=y,
由三角形的面積公式得:xy-y·1=10,x·4=10,
解得:x=5,y=5,
即OD=5,
∵OC=|-4|=4,
∴CD的值是4+5=9.
【點(diǎn)評】本題考查了三角形的面積、一次和與反比例函數(shù)的交點(diǎn)問題的應(yīng)用,題目比較好,但是一道比較容易出錯的題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(11·漳州)(滿分13分)如圖,直線y=-2x+2與x軸、y軸分別交于A、B兩點(diǎn),將△OAB繞點(diǎn)O逆時針方向旋轉(zhuǎn)90°后得到△OCD.
(1)填空:點(diǎn)C的坐標(biāo)是(_ ▲ ,_ ▲ ),
點(diǎn)D的坐標(biāo)是(_ ▲ ,_ ▲ );
(2)設(shè)直線CD與AB交于點(diǎn)M,求線段BM的長;
(3)在y軸上是否存在點(diǎn)P,使得△BMP是等腰三角形?若存在,
請求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆黑龍江大慶初三模擬數(shù)學(xué)試卷三(帶解析) 題型:解答題
如圖,直線y=x-1和拋物線y=x 2+bx+c都經(jīng)過點(diǎn)A(1,0),B(3,2).
【小題1】求拋物線的解析式;
【小題2】求不等式x2+bx+c<x-1的解集(直接寫出答案).
【小題3】設(shè)直線AB交拋物線對稱軸與點(diǎn)D,請?jiān)趯ΨQ軸上求一點(diǎn)P(D點(diǎn)除外),使△PBD為等腰三角形.(直接寫出點(diǎn)P的坐標(biāo),不寫過程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧地區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,直線y=2x-2與x軸交于點(diǎn)A,拋物線y=ax2+bx+c的對稱軸是直線x=3,拋物線經(jīng)過點(diǎn)A,且頂點(diǎn)P在直線y=2x-2上.
(1)求A、P兩點(diǎn)的坐標(biāo)及拋物線y=ax2+bx+c的解析式;
(2)畫出拋物線的草圖,并觀察圖象寫出不等式ax2+bx+c>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com