如圖,若直線y=-x+16交x軸于點(diǎn)E,交y軸于點(diǎn)D,點(diǎn)A(m,m)在直線DE上,雙曲線y=
k
x
與直線AO交于A、B兩點(diǎn).

(1)求k的值;
(2)過(guò)點(diǎn)B作BC⊥y軸,交DE于點(diǎn)C,若F(0,-16),連接AF交BC于點(diǎn)H,求證:OH+AH=OC;
(3)如果點(diǎn)Q為第二象限內(nèi)一動(dòng)點(diǎn),且在運(yùn)動(dòng)過(guò)程中始終保持∠AQB=90°,若AQ交y軸于M,BQ交x軸于N,則下列結(jié)論:①AM2+BN2=MN2;②AM+BN=MN,其中只有一個(gè)是正確的,請(qǐng)判斷正確結(jié)論并證明.
考點(diǎn):反比例函數(shù)綜合題
專(zhuān)題:綜合題
分析:(1)根據(jù)一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,先把點(diǎn)A(m,m)代入y=-x+16中求出m,則可得到A點(diǎn)坐標(biāo)為(8,8),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算k的值;
(2)過(guò)C作CM⊥x軸于M,過(guò)A作AN⊥y軸于N,如圖2,根據(jù)反比例函數(shù)的性質(zhì)得點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),則B點(diǎn)坐標(biāo)為(-8,-8),則利用C點(diǎn)在直線y=-x+16上課確定C點(diǎn)的坐標(biāo)為(24,-8),再利用B點(diǎn)和F點(diǎn)坐標(biāo)可判斷BC垂直平分OF,則HO=HF,所以O(shè)H+AH=HF+AH=AF,然后利用“SAS”證明△ANF≌△CMO,則AF=OC,于是得OH+AH=OC;
(3)截取OP=OM,連接BP、NP,如圖3,先利用“SAS”證明△OAM≌△OBP,得到∠OAM=∠OBP,AM=BP,OM=OP,易得AQ∥BP,NO垂直平分MP,所以∠QBP=∠AQB=90°,MN=NP,然后在Rt△BNP中,根據(jù)三角形三邊的關(guān)系可對(duì)②進(jìn)行判斷;根據(jù)勾股定理可對(duì)①進(jìn)行判斷.
解答:解:(1)∵點(diǎn)A(m,m)在直線y=-x+16上,
∴m=-m+16,解得m=8,
∴A點(diǎn)坐標(biāo)為(8,8),
∵A(8,8)在函數(shù)y=
k
x
的圖象上,
∴k=8×8=64,
∴反比例函數(shù)解析式為y=
16
x
;
(2)過(guò)C作CM⊥x軸于M,過(guò)A作AN⊥y軸于N,如圖2,
∵雙曲線y=
k
x
與直線AO交于A、B兩點(diǎn),
∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),
∴B點(diǎn)坐標(biāo)為(-8,-8),
∵BC⊥y軸,
∴C點(diǎn)的縱坐標(biāo)為-8,
把y=-8代入y=-x+16得-x+16=-8,解得x=24,
∴C點(diǎn)的坐標(biāo)為(24,-8),
∵B(-8,-8),F(xiàn)(0,-16),
∴BC垂直平分OF,
∴HO=HF,
∴OH+AH=HF+AH=AF,
∵FN=ON+OF=8+16=24,
∴OM=NF,
在△ANF和△CMO中,
AN=CM
∠ANF=∠CMO
NF=MO
,
∴△ANF≌△CMO(SAS),
∴AF=OC,
∴OH+AH=OC;
(3)①正確.
截取OP=OM,連接BP、NP,如圖3,
∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),
∴OA=OB,
在△OAM和△OBP中,
OA=OB
∠AOM=∠BOP
OM=OP
,
∴△OAM≌△OBP(SAS),
∴∠OAM=∠OBP,AM=BP,OM=OP,
∴AQ∥BP,NO垂直平分MP,
∴∠QBP=∠AQB=90°,MN=NP,
在Rt△BNP中,
∵BN+BP>NP,
∴AM+BN>MN,所以②錯(cuò)誤;
∵BP2+BN2=NP2,
∴AM2+BN2=MN2,所以①正確.
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合題:熟練掌握反比例函數(shù)圖象和一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、線段垂直平分線的性質(zhì)和勾股定理;會(huì)運(yùn)用三角形全等的知識(shí)解決線段相等和角相等的問(wèn)題;理解坐標(biāo)與圖形性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-3,y1)、B(-1,y2)、C(2,y3)都在反比例函數(shù)y=
k
x
(k<0)圖象上,則正確的是(  )
A、y1<y2<y3
B、y3<y2<y1
C、y3<y1<y2
D、y2<y1<y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x=2是關(guān)于x方程5a+13=
x
2
-a的解,求代數(shù)式a3+3a+6的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等腰三角形的一個(gè)內(nèi)角為40°,則這個(gè)等腰三角形的頂角為(  )
A、40°
B、100°
C、40°或70°
D、40°或100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下列單項(xiàng)式:-2x,5x2,-10x3,17x4,-26x5,…,按此規(guī)律,第10個(gè)單項(xiàng)式表示為
 
;   第n個(gè)單項(xiàng)式為
 
(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直接寫(xiě)出因式分解的結(jié)果:
x2-4=
 
; x2-x=
 
;x2-6x+9=
 
;x2+2xy+y2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1
36
÷(
1
4
+
1
12
-
7
18
-
1
36
)+(
1
4
+
1
12
-
7
18
-
1
36
)÷
1
36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

兩輛汽車(chē)從相距298千米的兩地同時(shí)出發(fā)相向而行,甲車(chē)的速度比乙車(chē)速度的2倍還快20km/時(shí),半小時(shí)后兩車(chē)相遇,兩車(chē)的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程組:
x+y+z=10
2x+3y+z=17
3x+2y-z=8

查看答案和解析>>

同步練習(xí)冊(cè)答案