【題目】已知:如圖,AB是⊙O的直徑,點C是過點A的⊙O的切線上一點,連接OC,過點A作OC的垂線交OC于點D,交⊙O于點E,連接CE.
(1)求證:CE與⊙O相切;
(2)連結(jié)BD并延長交AC于點F,若OA=5,sin∠BAE=,求AF的長.
【答案】(1)見解析;(2)
【解析】
(1)連接OE、BE,先證明OD∥BE,得到OC垂直平分AE,再證明△AOC≌△EOC,求出∠CEO=∠CAO=90°,即可得到結(jié)論;
(2)作DM⊥AB于M,先利用三角函數(shù)求出BE得到AE,根據(jù)垂徑定理求出AD,根據(jù)三角函數(shù)求出DM,利用勾股定理求出AM得到BM,根據(jù)DM∥AF證明△DMB∽△FAB,列比例線段由此求出AF.
(1)連接OE、BE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵AE⊥OC,
∴∠ADO=∠AEB=90°,
∴OD∥BE,
∵OA=OB,
∴AD=DE,
∴OC垂直平分AE,
∴AC=CE,
∴△AOC≌△EOC,
∴∠CEO=∠CAO=90°,
即OE⊥CE,
∴CE與⊙O相切;
(2)作DM⊥AB于M,
∵OA=5,
∴AB=10,
∵sin∠BAE=,
∴,
∴,
∴,
∴DM=,
∴,
∵OA=5,
∴OM=1,
∴BM=6,
∵AC是⊙O的切線,
∴∠CAB=∠DMB=90°,
∴DM∥AF,
∴△DMB∽△FAB,
∴,
∴,
∴AF=.
科目:初中數(shù)學 來源: 題型:
【題目】為了調(diào)查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:
成績x 學校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績在這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
學校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據(jù)可知該學生是_____________校的學生(填“甲”或“乙”),理由是__________;
(3)假設乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的直徑,為的切線,為弦,連接,,交于點,交于點,連接,,且.
(1)求證:為的切線;
(2)若,求證:;
(3)在(2)的條件下,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學活動小組在一次活動中,對一個數(shù)學問題作如下探究:
(問題發(fā)現(xiàn))如圖1,AD,BD為⊙O的兩條弦(AD<BD),點C為的中點,過C作CE⊥BD,垂足為E.求證:BE=DE+AD.
(問題探究)小明同學的思路是:如圖2,在BE上截取BF=AD,連接CA,CB,CD,CF.……請你按照小明的思路完成上述問題的證明過程.
(結(jié)論運用)如圖3,△ABC是⊙O的內(nèi)接等邊三角形,點D是上一點,∠ACD=45°,連接BD,CD,過點A作AE⊥CD,垂足為E.若AB=,則△BCD的周長為 .
(變式探究)如圖4,若將(問題發(fā)現(xiàn))中“點C為的中點”改為“點C為優(yōu)弧的中點”,其他條件不變,上述結(jié)論“BE=DE+AD”還成立嗎?若成立,請說明理由;若不成立,請寫出BE、AD、DE之間的新等量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大變化,其體溫()與時間(小時)之間的關(guān)系如圖1所示.
小清同學根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).
A.駱駝在時刻的體溫與0時體溫的絕對差(即差的絕對值)
B.駱駝從0時到時刻之間的最高體溫與當日最低體溫的差
C.駱駝在時刻的體溫與當日平均體溫的絕對差
D.駱駝從0時到時刻之間的體溫最大值與最小值的差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠CAB=90°,AB=AC,點A在y軸上,BC∥x軸,點B.將△ABC繞點A順時針旋轉(zhuǎn)的△AB′C′,當點B′落在x軸的正半軸上時,點C′的坐標為( )
A.(﹣,﹣1)B.(﹣,﹣1)
C.(﹣,+1)D.(﹣,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坡角為33°的山坡上有一建筑物AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得建筑物AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求建筑物AB的高(AB,CD均與水平面垂直,參考數(shù)據(jù):sin33°=0.54,cos33°=0.84,tan33°=0.65)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知和中,,,,(其中),連接、,點為線段的中點,連接、,繞點順時針旋轉(zhuǎn),探究線段與的數(shù)量關(guān)系.
(1)如圖1,點落在邊上時,探究與的數(shù)量關(guān)系,并說明理由;
(2)如圖2,點落在內(nèi)部時,探究與的數(shù)量關(guān)系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC 內(nèi)接于⊙O,過點 A 作⊙O 的切線交 CB 的延長線于點 P,且∠PAB=45°.
(1)如圖 1,求∠ACB 的度數(shù);
(2)如圖 2,AD 是⊙O 的直徑,AD 交 BC 于點 E,連接 CD,求證:AC CD ;
(3)如圖 3 ,在(2)的條件下,當 BC 4CD 時,點 F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com