【題目】解方程

(1)x25x+60;

(2)xx+5)=5x+25;

(3)2x23x50;

(4)(x12﹣(2x+320

【答案】1x12,x23;(2)x1=﹣5,x25;(3x1x2=﹣1;(4)x1=﹣,x2=﹣4

【解析】

1)利用因式分解法求解即可;

2)把右邊的項移至左邊,然后利用因式分解法求解即可;

3)利用十字相乘法將左邊分解因式,利用因式分解法求解即可;

4)左邊利用平方差公式分解,利用因式分解法求解即可.

解:(1)x25x+60,

x2)(x3)=0,

x20x30

x12x23;

(2)xx+5)﹣5x+5)=0,

x+5)(x5)=0,

x+50x50

x1=﹣5,x25

(3)2x23x50,

2x5)(x+1)=0,

2x50x+10

x1,x2=﹣1;

(4)(x12﹣(2x+320

x1+2x+3)(x12x3)=0,

3x+2)(x+4)=0,

3x+20x+40,

x1=﹣,x2=﹣4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙Mx軸交于A、B兩點,與y軸切于點C,且OA,OB的長是方程x24x+30的解.

1)求M點的坐標(biāo).

2)若P是⊙M上一個動點(不包括AB兩點),求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)為籌備繽紛節(jié)財商體驗活動,準(zhǔn)備在商店購入小商品AB.已知AB的單價和為25元,小明計劃購入A的數(shù)量比B的數(shù)量多3件,但一共不超過28件.現(xiàn)商店將A的單價提高20%,B8折出售,小明決定將A、B的原定數(shù)量對調(diào),這樣實際花費比原計劃少6元.已知調(diào)整前后的價格和數(shù)量均為整數(shù),求小明原計劃購買費用為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2-2x-3x軸交于A,B兩點,與y軸交于點C,其對稱軸與拋物線相交于點M,與x軸相交于點N,點P是線段MN上的一個動點,連接CP,過點PPECPx軸于點E

1)求拋物線的頂點M的坐標(biāo);

2)當(dāng)點E與原點O的重合時,求點P的坐標(biāo);

3)求動點E到拋物線對稱軸的最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,把△ABCA點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F

1)求證:△AEC≌△ADB;(2)若AB2,∠BAC45°,當(dāng)四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠A30°,AC8,OAC的中點,把RtABC繞著點O旋轉(zhuǎn)得到RtA'B'C',使得點C的對應(yīng)點C'恰好落在AB上,則C,C'兩點間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtOAB中,∠OAB=90°,OA=AB=5,將OAB繞點O沿逆時針方向旋轉(zhuǎn)90°得到OA1B1

1)線段OA1的長是   ,AOB1的度數(shù)是   ;

2)連接AA1,求證:四邊形OAA1B1是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,對稱軸是直線x=﹣1,有以下結(jié)論:①abc0;②2ab0;③4acb28a;④3a+c0;⑤abmam+b),其中正確的結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案