如果x2+ax+121是一個(gè)完全平方式,那么a的值是

[  ]

A.22

B.11

C.±22

D.±11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)或化簡(jiǎn)求值
①3(x2-2xy)-[3x2-2y-2(3xy+y)]
②已知A=3a2+b2-5ab,B=2ab-3b2+4a2,先求-B+2A,并求當(dāng)a=-
1
2
,b=2時(shí),-B+2A的值.
③如果代數(shù)式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值與字母x所取的值無(wú)關(guān),試求代數(shù)式
1
3
a3-2b2-(
1
4
a3-3b2)
的值.
④有這樣一道計(jì)算題:“計(jì)算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=
1
2
,y=-1”,甲同學(xué)把x=
1
2
看錯(cuò)成x=-
1
2
;但計(jì)算結(jié)果仍正確,你說(shuō)是怎么一回事?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如果x=3是方程x2+ax-12=0的一個(gè)根,那么另一個(gè)根是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)或求值:
(1)4(m2+n)+2(n-2m2
(2)5ab2-[a2b+2(a2b-3ab2)]
(3)若A=x2-3x-6,B=2x2-4x+6,求:當(dāng)x=-1時(shí),3A-2B的值.
(4)根據(jù)右邊的數(shù)值轉(zhuǎn)換器,當(dāng)輸入的x與y滿足|x+1|+(y-
1
2
)2=0
時(shí),請(qǐng)列式求出輸出的結(jié)果.
(5)如果代數(shù)式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值與字母x所取的值無(wú)關(guān),試求代數(shù)式
1
3
a3-2b2-(
1
4
a3-3b2)
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

(1)7ab414a2b249a3b27ab2(_________________)

(2)多項(xiàng)式x(ab)y(ba)z(ba)各項(xiàng)的公因式是_____________

(3)如果(ab)n(ba)n成立,那么n一定是_____________;如果(ab) n=-(ba)n成立,那么n一定是_____________

(4)2xn3xn25xn3xn(_____________)

(5)如果4x36x22x2(2xk),那么k_____________

(6)(3x2y)2(2y3x)3(2y3x)2(_____________)

(7)a(cd)4b(dc)4(cd)4(_____________)

(8)127×314314×715158×314_____________

(9)分解因式(ab)2n(ba)2n1(n為自然數(shù))_____________

(10)如果多項(xiàng)式x2axb分解因式為(x1)(x2),那么a____________b_____________

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

(1)方程x224x兩根之和是_________,兩根之積是_________;

(2)如果一元二次方程8x2-(m1xm70有一個(gè)根是0,則m_________;

(3)已知方程x2mxn0兩根互為相反數(shù),則m__________0,n__________0;

(4)已知方程x24xk20兩根之積是–3,則k_________;

(5)已知方程9x22mx80兩根之和等于2,則m_________;

(6)已知?ot匠?/span>x23xm0的一個(gè)根是另一個(gè)根的2倍,則m_________;

(7)若方程x25xm0兩根之差的平方為16,則m_________;

(8)若兩數(shù)的和為-5,積為-6,則此兩數(shù)為__________________

(9)若關(guān)于x的二次三項(xiàng)式x2ax2a3是完全平方式,則a的值為________________

(10)若方程3x2pxq0的兩根的倒數(shù)之和是-2,且3p2q=-8,則p、q的值為_____________;

(11)已知一個(gè)一元二次方程的兩根分別比方程x22x30的兩根大1,則此方程為______________;

(12)設(shè)x1x2是方程x213xm0的兩個(gè)根,且x14x22,則m__________________

 

查看答案和解析>>

同步練習(xí)冊(cè)答案