(2006•貴港)如圖,已知直線l的函數(shù)表達(dá)式為y=-x+8,且l與x軸,y軸分別交于A,B兩點(diǎn),動(dòng)點(diǎn)Q從B點(diǎn)開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),同時(shí)動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),設(shè)點(diǎn)Q,P移動(dòng)的時(shí)間為t秒
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)當(dāng)t=______時(shí),△APQ與△AOB相似;
(3)(2)中當(dāng)△APQ與△AOB相似時(shí),線段PQ所在直線的函數(shù)表達(dá)式為______.

【答案】分析:(1)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即與x軸的交點(diǎn)y=0,與y軸的交點(diǎn)x=0,求出A.B兩點(diǎn)的坐標(biāo);
(2)當(dāng)移動(dòng)的時(shí)間為t時(shí),根據(jù)△APQ∽△AOB,利用三角形的相似比求出t的值;
(3)當(dāng)t=秒時(shí),PQ∥OB,PQ⊥OA,PA=,即可求出P(,0),進(jìn)而求出線段PQ所在直線的函數(shù)表達(dá)式;
當(dāng)t=時(shí)PA=,BQ=,OP=,有P(,0),設(shè)Q點(diǎn)的坐標(biāo)為(x,y),同上可求出Q的坐標(biāo),設(shè)PQ的表達(dá)式為y=kx+b,把P,Q兩點(diǎn)的坐標(biāo)分別為代入即可求出PQ的表達(dá)式.
解答:解:(1)由y=-x+8,
令x=0,得y=8;
令y=0,得x=6.
A,B的坐標(biāo)分別是(6,0),(0,8);

(2)由BO=8,AO=6,根據(jù)勾股定理得AB==10.
當(dāng)移動(dòng)的時(shí)間為t時(shí),AP=t,AQ=10-2t.
∵∠QAP=∠BAO,當(dāng)=時(shí),
△APQ∽△AOB,
=
∴t=(秒).
∵∠QAP=∠BAO,
∴當(dāng)=時(shí),
△APQ∽△AOB,
=
∴t=(秒),
∴t=秒或秒,經(jīng)檢驗(yàn),它們都符合題意,此時(shí)△AQP與△AOB相似;

(3)當(dāng)t=秒時(shí),PQ∥OB,PQ⊥OA,PA=,
∴OP=,
∴P(,0),
∴線段PQ所在直線的函數(shù)表達(dá)式為x=,
當(dāng)t=時(shí)PA=,BQ=,OP=
∴P(,0),
設(shè)Q點(diǎn)的坐標(biāo)為(x,y),則有=,
=,
∴x=,
當(dāng)x=時(shí),y=-×+8=,
∴Q的坐標(biāo)為,
設(shè)PQ的表達(dá)式為y=kx+b,
,

∴PQ的表達(dá)式為y=x-
點(diǎn)評(píng):此題考查的是一次函數(shù)的解析式與三角形相結(jié)合,根據(jù)三角形相似求一次函數(shù)的解析式,有一定的難度.是中學(xué)階段的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•貴港)如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0),且x1+x2=4,
(1)分別求出A,B兩點(diǎn)的坐標(biāo);
(2)求此拋物線的函數(shù)解析式;
(3)設(shè)此拋物線與y軸的交點(diǎn)為C,過作直線l與拋物線交于另一點(diǎn)D(點(diǎn)D在x軸上方),連接AC,CB,BD,DA,當(dāng)四邊形ACBD的面積為4時(shí),求點(diǎn)D的坐標(biāo)和直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2006•貴港)如圖,已知直線l的函數(shù)表達(dá)式為y=-x+8,且l與x軸,y軸分別交于A,B兩點(diǎn),動(dòng)點(diǎn)Q從B點(diǎn)開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),同時(shí)動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),設(shè)點(diǎn)Q,P移動(dòng)的時(shí)間為t秒
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
(2)當(dāng)t=______時(shí),△APQ與△AOB相似;
(3)(2)中當(dāng)△APQ與△AOB相似時(shí),線段PQ所在直線的函數(shù)表達(dá)式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西貴港市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•貴港)如圖所示,圖(1)是一座拋物線型拱橋在建造過程中裝模時(shí)的設(shè)計(jì)示意圖,拱高為30m,支柱A3B3=50m,5根支柱A1B1,A2B2,A3B3,A4B4,A5B5之間的距離均為15m,B1B5∥A1A5,將拋物線放在圖(2)所示的直角坐標(biāo)系中
(1)直接寫出圖(2)中點(diǎn)B1的坐標(biāo)為______,B3的坐標(biāo)為______,B5的坐標(biāo)為______;
(2)求圖(2)中拋物線的函數(shù)表達(dá)式是______;
(3)求圖(1)中支柱A2B2的長(zhǎng)度為______,A4B4的長(zhǎng)度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西貴港市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•貴港)如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0),且x1+x2=4,
(1)分別求出A,B兩點(diǎn)的坐標(biāo);
(2)求此拋物線的函數(shù)解析式;
(3)設(shè)此拋物線與y軸的交點(diǎn)為C,過作直線l與拋物線交于另一點(diǎn)D(點(diǎn)D在x軸上方),連接AC,CB,BD,DA,當(dāng)四邊形ACBD的面積為4時(shí),求點(diǎn)D的坐標(biāo)和直線l的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案