小華將一張矩形紙片(如圖1)沿對(duì)角線(xiàn)CA剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在A(yíng)C所在的直線(xiàn)上.
(1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀(guān)察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.

【答案】分析:(1)易得MB和DM分別是直角三角形ABG和直角三角形ADG斜邊上的中線(xiàn),都等于A(yíng)G的一半,那么BM=DM.
(2)把∠BMD進(jìn)行合理分割,應(yīng)用外角等于內(nèi)角和,得到∠BMD與∠BAD之間的關(guān)系,進(jìn)而得到與∠ACB即∠α之間的關(guān)系,當(dāng)∠α=45°時(shí),∠BMD=90°,那么△BMD為等腰直角三角形.
(3)通過(guò)類(lèi)比思想可猜想MB與MD的數(shù)量關(guān)系和∠BMD的大小結(jié)論依然成立.那么只有當(dāng)∠α=60°時(shí),△BMD為等邊三角形.
解答:解:(1)MB=MD,
證明:∵AG的中點(diǎn)為M∴在Rt△ABG中,MB=AG
在Rt△ADG中,MD=AG
∴MB=MD.

(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,
同理∠DMG=∠DAM+∠ADM=2∠DAM,
∴∠BMD=2∠BAM+2∠DAM=2∠BAC,
而∠BAC=90°-α,
∴∠BMD=180°-2α,
∴當(dāng)α=45°時(shí),∠BMD=90°,此時(shí)△BMD為等腰直角三角形.

(3)當(dāng)△CGD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度,仍然存在MB=MD,
∠BMD=180°-2α,
故當(dāng)α=60°時(shí),△BMD為等邊三角形.
解法:延長(zhǎng)DM至N,使MN=DM,連AN、BN、BD,則有AN=DH,∠NAM=∠DHM

∵∠1=∠AHD+∠2
∴∠BAM+90°=∠AHD+90°-∠DCB,
∴∠NAB=∠DCB,
∵∠CDH=∠ABC=90°,∠DCH=∠BCA,
∴△CDH∽△CBA,
∴DH:AB=CD:BC,
∴AN:AB=CD:BC,
∴△NAB∽△DCB,
∴∠NBA=∠DBC
∴∠NBD=90°,
∴BM=MD,
由△NAB∽△DCB得NB:AB=BD:BC
∴△NBD∽△ABC,
∴∠BNM=∠BAC,
∵∠BMD=2∠BNM
∴∠BMD=2(90°-α)=180°-2α.
點(diǎn)評(píng):此題是一道集剪接、平移、旋轉(zhuǎn)為一體的直線(xiàn)形操作探究題,學(xué)生可以用自己身邊的直觀(guān)模型(將一矩形紙片剪開(kāi),得到兩個(gè)全等的直角三角形紙片),按照第(1)問(wèn)中的操作要求實(shí)際進(jìn)行操作演示,在操作、觀(guān)察、度量的基礎(chǔ)上再進(jìn)行論證,較好地體現(xiàn)了從感性認(rèn)識(shí)到理性認(rèn)識(shí)的思維過(guò)程.第(2)問(wèn)運(yùn)用直線(xiàn)形的有關(guān)知識(shí)不難得出結(jié)論.第(3)問(wèn)必須在第(1)、(2)問(wèn)的基礎(chǔ)上再進(jìn)行觀(guān)察、猜想、歸納、總結(jié)出一般規(guī)律.此題既考查了直線(xiàn)形的有關(guān)知識(shí),又考查了學(xué)生操作、觀(guān)察、驗(yàn)證、推理的能力,不愧是一道獨(dú)具匠心的試題.它給我們的啟示是:在平時(shí)教學(xué)中要多給學(xué)生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),積極引導(dǎo)學(xué)生參與實(shí)踐操作活動(dòng),培養(yǎng)他們的積極動(dòng)手、樂(lè)于探究的意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小華將一張矩形紙片(如圖1)沿對(duì)角線(xiàn)CA剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在A(yíng)C所在的直線(xiàn)上.
(1)若ED與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你觀(guān)察、測(cè)量MB、MD的長(zhǎng)度,猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說(shuō)明當(dāng)α=45°時(shí),△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連接MB、MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不需要證明,并說(shuō)明α為何值時(shí),△BMD為等邊三角形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小華將一張矩形紙片(如圖1)沿對(duì)角線(xiàn)AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在A(yíng)C所在的直線(xiàn)上。

【小題1】(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
【小題2】(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
【小題3】(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市余杭區(qū)星橋中學(xué)八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

小華將一張矩形紙片(如圖1)沿對(duì)角線(xiàn)AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在A(yíng)C所在的直線(xiàn)上。

【小題1】(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)
【小題2】(2)在(1)的條件下,求出∠BMD的大小(用含β的式子表示),并說(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)
【小題3】(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省杭州市八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

小華將一張矩形紙片(如圖1)沿對(duì)角線(xiàn)AC剪開(kāi),得到兩張三角形紙片(如圖2),其中∠ACB=β,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點(diǎn)D落在△ACB紙片的斜邊AC上,直角邊DF落在A(yíng)C所在的直線(xiàn)上。

 

 

 

 

 

 

1.(1)若DE與BC相交于點(diǎn)G,取AG的中點(diǎn)M,連結(jié)MB,MD,當(dāng)△EFD紙片沿CA方向平移時(shí)(如圖3),請(qǐng)你猜想并寫(xiě)出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;(3分)

2.(2)在(1)的條件下,求出∠BMD的大。ㄓ煤碌氖阶颖硎荆⒄f(shuō)明當(dāng)β=45o時(shí),△BMD是什么三角形;(5分)

3.(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定的角度(小于90o),此時(shí)△CGD變成△CHD,同樣取AH的中點(diǎn)M,連結(jié)MB,MD(如圖4),請(qǐng)繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫(xiě)出你的猜想,不證明,并說(shuō)明β為何值時(shí)△BMD為等邊三角形。(2分)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案