【題目】如圖,AB是O的直徑,C,D是O上的點,且OCBD,AD分別與BC,OC相交于點E,F(xiàn),則下列結論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認為正確結論的序號都填上)

【答案】①③④⑤

【解析】

根據(jù)圓周角定理、平行線的性質、垂徑定理等判斷即可

①∵AB是⊙O的直徑,∴∠ADB=90°,ADBD,故①正確

②∵∠AOC是⊙O的圓心角,AEC是⊙O的圓內(nèi)部的角∴∠AOC≠∠AEC,故②不正確;

③∵OCBD∴∠OCB=DBC

OC=OB,∴∠OCB=OBC∴∠OBC=DBC,BC平分∠ABD故③正確;

④∵AB是⊙O的直徑∴∠ADB=90°,ADBD

OCBD∴∠AFO=90°.

∵點O為圓心,AF=DF故④正確;

⑤由④有,AF=DF

∵點OAB中點,OF是△ABD的中位線,BD=2OF,故⑤正確;

⑥∵△CEF和△BED,沒有相等的邊,∴△CEF與△BED不全等,故⑥不正確

綜上可知其中一定成立的有①③④⑤

故答案為:①③④⑤

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖在平面直角坐標系中

1作出ABC關于軸對稱的,并寫出三個頂點的坐標 (  ),(  ),( 。

2直接寫出ABC的面積為 ;

3軸上畫點P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCDAD沿折痕AE折疊,使點D落在BC上的F處,已知AB6,ABF的面積為24,則EC等于( 。

A.2B.C.4D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結DB,過點DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1在等腰Rt△ABC,BAC=90°,EAC上(且不與點AC重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形CEDABC的下方時,AB=2CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°2秒后到達C點,測得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結果精確到1m.

1)求B,C的距離.

2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣4ax+3a.

(Ⅰ)求該二次函數(shù)的對稱軸;

(Ⅱ)若該二次函數(shù)的圖象開口向下,當1x4時,y的最大值是2,且當1x4時,函數(shù)圖象的最高點為點P,最低點為點Q,求△OPQ的面積;

(Ⅲ)若對于該拋物線上的兩點P(x1,y1),Q(x2,y2),當tx1t+1,x25時,均滿足y1y2,請結合圖象,直接寫出t的最大值.

查看答案和解析>>

同步練習冊答案