【題目】已知方程x2+3x-1=0的兩實數(shù)根為α,β,不解方程求下列各式的值.
(1)α2+β2;(2)α3β+αβ3;(3).
【答案】(1)11;(2)-11;(3)-11
【解析】
根據(jù)根與系數(shù)的關(guān)系得到α+β=3,αβ=1,
(1)利用完全平方公式變形得到α2+β2=(α+β)2-2αβ,然后利用整體代入的方法計算;
(2)利用因式分解得到α3β+αβ3=αβ(α2+β2),然后利用整體代入的方法計算;
(3)根據(jù)分式加法變形得到,然后利用整體代入的方法計算.
∵α,β是方程x2+3x-1=0的兩個實數(shù)根,
∴α+β=-3,αβ=-1,
(1)α2+β2=(α+β)2-2αβ=(-3)2-2×(-1)=11,
(2)α3β+αβ3=αβ(α2+β2)=(-1)×11=-11,
(3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點A(4,0)的兩條直線l1,l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB=2.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為20,求直線l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)數(shù) a , b , c 在數(shù)軸上的位置如圖 1 所示且| a || c |:
①填空:| a | , | b a | ,| 2b | .
②化簡:| c b | | b a | | a b | .
( 2) a , b , c 大小關(guān)系如圖 2, 下列各式① b a (c) 0 ; ② (a) b c 0 ;③④ bc a 0 ;⑤| a b | | c b | | a c | 2b ,其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于一次函數(shù)y=﹣2x+3,下列結(jié)論正確的是( 。
A. 圖象過點(1,﹣1) B. 圖象經(jīng)過一、二、三象限
C. y隨x的增大而增大 D. 當(dāng)x>時,y<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,解決下列問題:
(1)如圖①,寫出∠ABE、∠CDE和∠E之間的數(shù)量關(guān)系: ;
(2)如圖②,BP、DP分別平分∠ABE、∠CDE,若∠E=100°,求∠P的度數(shù);
(3)如圖③,若∠ABP=∠ABE,∠CDP=∠CDE,試寫出∠P與∠E的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC,BC,,AD=3.給出下列結(jié)論:①AC平分∠BAD;②△ABC∽△ACE;③AB=3PB;④S△ABC=5,其中正確的是__________(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,過C點作CD⊥AB,垂足為D,且AD=m,BD= n,AC2:BC2=2:1,又關(guān)于x的方程x2-2(n-1)x+m2-12=0,兩實數(shù)根的差的平方小于192,
求:m,n為整數(shù)時,一次函數(shù)y=mx+n的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與兩坐標(biāo)軸分別交于、兩點,將線段分成等份,分點分別為,,P3,
,… ,過每個分點作軸的垂線分別交直線于點,,,… ,用,,,…,分別表示,,…,的面積,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+1與兩坐標(biāo)軸分別交于A,B兩點,將線段OA分成n等份,分點分別為P1,P2,P3,…,Pn﹣1,過每個分點作x軸的垂線分別交直線AB于點T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分別表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則S1+S2+S3+…+Sn﹣1=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com