已知二次函數(shù)y=x2+bx+c與x軸交于A(-1,0)、B(1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)若有一半徑為r的⊙P,且圓心P在拋物線上運(yùn)動(dòng),當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),求半徑r的值.
(3)半徑為1的⊙P在拋物線上,當(dāng)點(diǎn)P的縱坐標(biāo)在什么范圍內(nèi)取值時(shí),⊙P與y軸相離、相交?
解:(1)由題意,得 解得
∴二次函數(shù)的關(guān)系式是y=x2-1.
(2)設(shè)點(diǎn)P坐標(biāo)為(x,y),則當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),有y=±x.
由y=x,得x2-1=x,即x2-x-1=0,解得x=.
由y=-x,得x2-1=-x,即x2+x-1=0,解得x=.
∴⊙P的半徑為r=|x|=.
(3)設(shè)點(diǎn)P坐標(biāo)為(x,y),∵⊙P的半徑為1,
∴當(dāng)y=0時(shí),x2-1=0,即x=±1,即⊙P與y軸相切,
又當(dāng)x=0時(shí),y=-1,
∴當(dāng)y>0時(shí), ⊙P與y相離;
當(dāng)-1≤y<0時(shí), ⊙P與y相交.
【解析】(1)由A(-1,0)、B(1,0)根據(jù)待定系數(shù)法可求出二次函數(shù)的關(guān)系式;
(2)由⊙P與兩坐標(biāo)軸都相切可得到點(diǎn)P橫坐標(biāo)與縱坐標(biāo)的關(guān)系,再待入二次函數(shù)關(guān)系式即可求得點(diǎn)P的
坐標(biāo),從而得到半徑r的值.
(3)根據(jù)直線與圓的位置關(guān)系特征即可得到⊙P與y軸相離、相交時(shí)點(diǎn)P的縱坐標(biāo)的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、-
| ||
C、
| ||
D、-
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com