在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),過點(diǎn)A的直線y=kx+1交拋物線于點(diǎn)C(2,3).
(1)求直線AC及拋物線的解析式;
(2)若直線y=kx+1與拋物線的對(duì)稱軸交于點(diǎn)E,以點(diǎn)E為中心將直線y=kx+1順時(shí)針旋轉(zhuǎn)90°得到直線l,設(shè)直線l與y軸的交點(diǎn)為P,求△APE的面積;
(3)若G為拋物線上一點(diǎn),是否存在x軸上的點(diǎn)F,使以B、E、F、G為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:本題是一次函數(shù),二次函數(shù)的綜合題,充分利用兩者之間圖象的聯(lián)系,解析式中待定系數(shù)的個(gè)數(shù),先求一次函數(shù)解析式,再求二次函數(shù)解析式,根據(jù)題目的要求,對(duì)二次函數(shù)進(jìn)行運(yùn)用.在坐標(biāo)系中求圖形面積,可以充分利用圖形的各頂點(diǎn)坐標(biāo)的數(shù)值,確定圖形的底、高,可把圖形分割成幾個(gè)規(guī)則圖形的和或者差.
解答:解:(1)∵點(diǎn)C(2,3)在直線y=kx+1上,
∴2k+1=3.
解得k=1.
∴直線AC的解析式為y=x+1.
∵點(diǎn)A在x軸上,
∴A(-1,0).
∵拋物線y=-x2+bx+c過點(diǎn)A、C,

解得
∴拋物線的解析式為y=-x2+2x+3.

(2)由y=-x2+2x+3=-(x-1)2+4,
可得拋物線的對(duì)稱軸為x=1,B(3,0).
∴E(1,2).
根據(jù)題意,知點(diǎn)A旋轉(zhuǎn)到點(diǎn)B處,直線l過點(diǎn)B、E.
設(shè)直線l的解析式為y=mx+n.
將B、E的坐標(biāo)代入y=mx+n中,
聯(lián)立可得m=-1,n=3.
∴直線l的解析式為y=-x+3.
∴P(0,3).
過點(diǎn)E作ED⊥x軸于點(diǎn)D.
∴S△PAE=S△PAB-S△EAB=AB•PO-AB•ED=×4×(3-2)=2.

(3)存在,點(diǎn)F的坐標(biāo)分別為(3-,0),(3+,0),(-1-,0)(-1+,0).
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法及一次函數(shù),二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案