【題目】正三角形外接圓面積是,其內(nèi)切圓面積是(

A.B.C.D.

【答案】D

【解析】

ABC為等邊三角形,利用外接圓和內(nèi)切圓的性質(zhì)得∠OBC=30°,在RtOBD中,利用含30°的直角三角形三邊的關(guān)系得到OD=OB,然后根據(jù)圓的面積公式得到△ABC的外接圓的面積與其內(nèi)切圓的面積之比,即可得解.

ABC為等邊三角形,AD為角平分線,⊙O為△ABC的內(nèi)切圓,連OB,如圖所示:

∵△ABC為等邊三角形,⊙O為△ABC的內(nèi)切圓,

∴點(diǎn)O為△ABC的外心,ADBC,

∴∠OBC=30°,

RtOBD中,OD=OB,

∴△ABC的外接圓的面積與其內(nèi)切圓的面積之比=OB2OD2=41

∵正三角形外接圓面積是

∴其內(nèi)切圓面積是

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,點(diǎn)EAB上一點(diǎn),且AE2EB .

1)求的值.

2)求的值.

3)如果△AEF的面積8cm2,分別求出△CDF的面積和△ADF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利川市南門大橋是上世紀(jì)90年代修建的一座石拱橋,其主橋孔的橫截面是一條拋物線的一部分,2019年在維修時(shí),施工隊(duì)測得主橋孔最高點(diǎn)到水平線的高度為.寬度.如圖所示,現(xiàn)以點(diǎn)為原點(diǎn),所在直線為軸建立平面直角坐標(biāo)系.

1)直接寫出點(diǎn)及拋物線頂點(diǎn)的坐標(biāo);

2)求出這條拋物線的函數(shù)解析式;

3)施工隊(duì)計(jì)劃在主橋孔內(nèi)搭建矩形腳手架,使點(diǎn)在拋物線上,點(diǎn)在水平線上,為了籌備材料,需求出腳手架三根鋼管的長度之和的最大值是多少?請你幫施工隊(duì)計(jì)算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,=5,=9,=,動點(diǎn)出發(fā),沿射線方向以每秒5個(gè)單位長度的速度運(yùn)動,動點(diǎn)點(diǎn)出發(fā),一相同的速度在線段上由運(yùn)動,當(dāng)點(diǎn)運(yùn)動到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,以為邊作正方形(按逆時(shí)針排序),以為邊在上方作正方形.

(1)_______.

(2)設(shè)點(diǎn)運(yùn)動時(shí)間為,正方形的面積為,請?zhí)骄?/span>是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.

(3)當(dāng)為何值時(shí),正方形的某個(gè)頂點(diǎn)(點(diǎn)除外)落在正方形的邊上,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB9,AD3,點(diǎn)P是邊BC上的動點(diǎn)(點(diǎn)P不與點(diǎn)B,點(diǎn)C重合),過點(diǎn)P作直線PQBD,交CD邊于Q點(diǎn),再把△PQC沿著動直線PQ對折,點(diǎn)C的對應(yīng)點(diǎn)是R點(diǎn),設(shè)CP的長度為x,△PQR與矩形ABCD重疊部分的面積為y

1)求∠CQP的度數(shù);

2)當(dāng)x取何值時(shí),點(diǎn)R落在矩形ABCDAB邊上;

3)①求yx之間的函數(shù)關(guān)系式;

②當(dāng)x取何值時(shí),重疊部分的面積等于矩形面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對稱軸為直線x=-2 .

(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動點(diǎn),請進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、AD為頂點(diǎn)的三角形與RtAOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸的兩個(gè)交點(diǎn)分別為A-3,0)、B1,0),過頂點(diǎn)CCHx軸于點(diǎn)H.

1)直接填寫:a= ,b= ,頂點(diǎn)C的坐標(biāo)為 ;

2)在y軸上是否存在點(diǎn)D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;

3)若點(diǎn)Px軸上方的拋物線上一動點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQAC于點(diǎn)Q,當(dāng)△PCQ與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+3經(jīng)過點(diǎn)A(﹣1,8),頂點(diǎn)為M;

(1)求拋物線的表達(dá)式;

(2)設(shè)拋物線對稱軸與x軸交于點(diǎn)B,連接AB、AM,求△ABM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案