【題目】某學校初一、初二年級各有500名學生,為了解兩個年級的學生對消防安全知識的掌握情況,學校從初一、初二年級各隨機抽取20名學生進行消防安全知識測試,滿分100分,成績整理分析過程如下,請補充完整:

(收集數(shù)據(jù))

初一年級20名學生測試成績統(tǒng)計如下:

78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97

初二年級20名學生測試成績不低于80,但是低于90分的成績?nèi)缦拢?/span>

83 86 81 87 80 81 82

(整理數(shù)據(jù))按照如下分數(shù)段整理、描述兩組樣本數(shù)據(jù):

成績

0

初一

2

3

7

5

3

初二

0

4

5

7

4

(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

76.5

76.5

132.5

初二

79.2

74

100.4

1)直接寫出,的值;

2)根據(jù)抽樣調(diào)查數(shù)據(jù),估計初一年級消防安全知識測試成績在70分及其以上的大約有多少人?

3)通過以上分析,你認為哪個年級對消防安全知識掌握得更好,并說明推斷的合理性.

【答案】1;(2375;(3)初二年級對消防安全知識掌握得更好,理由詳見解析

【解析】

1)根據(jù)初二學生抽取20人,則中位數(shù)是20個成績排序后第10與第11的平均數(shù),將數(shù)據(jù)從小到大排列,根據(jù)表格知,第10與第11名的成績在8090分段里,確定即可;初一數(shù)據(jù)中超出出現(xiàn)次數(shù)最多的數(shù)據(jù),即為眾數(shù);

(2)先計算初一樣本超過70分的百分比,用樣本估計總體,即可估計出初一年級測試成績在70分及其以上的人數(shù);

(3)綜合比較平均數(shù),中位數(shù),眾數(shù),方差,進行說明即可.

解:(1)初二一共抽取20人進行測試,則中位數(shù)是20個成績排序后第10與第11的平均數(shù),將數(shù)據(jù)從小到大排列,根據(jù)表格知,第10與第11名的成績在8090分段里,且第10名為80分,第11名為81分,因此;

分析初一測試成績知,眾數(shù)為75,因此

故答案為:

2)根據(jù)初一抽樣調(diào)查數(shù)據(jù),樣本中成績在70分及以上的比例為,因此估計初一年級測試成績在70分及以上的人數(shù)有

答:估計初一年級測試成績在70分及以上的人數(shù)有375

3)答:初二年級對消防安全知識掌握得更好,

理由如下:

①初二年級測試成績的平均分相較于初一年級更高,說明初二年級的整體掌握情況更好;

②初二年級測試成績的方差相較于初一年級更高,說明初二年級的掌握情況更穩(wěn)定;

③初二年級測試成績的中位數(shù)相較于初一年級更高,說明初二年級測試成績的高分更多,掌握得很好的人數(shù)更多.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACB=90°,AC=BC,CD平分ACB,點D,E關(guān)于CB對稱,連接EB并延長,與AD的延長線交于點F,連接DE,CE.對于以下結(jié)論:

DE垂直平分CB;AD=BE;③∠F不一定是直角;EF2DF2=2CD2

其中正確的是(  )

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的平分線交于點,交的延長線于點,于點,,則的周長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx5的圖象與x軸交于AB兩點,與y軸交于點C,其中點A坐標為(1,0),一次函數(shù)yx+k的圖象經(jīng)過點BC

1)試求二次函數(shù)及一次函數(shù)的解析式;

2)如圖1,點D(2,0)x軸上一點,P為拋物線上的動點,過點P、D作直線PD交線段CB于點Q,連接PC、DC,若SCPD3SCQD,求點P的坐標;

3)如圖2,點E為拋物線位于直線BC下方圖象上的一個動點,過點E作直線EGx軸于點G,交直線BC于點F,當EF+CF的值最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是2:

(1)求反比例函數(shù)的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個不相等的實數(shù)根,且其中一個根為另一個根的一半,則稱這樣的方程為“半等分根方程”.

1)①方程 半等分根方程(填“是”或“不是”);

②若是半等分根方程,則代數(shù)式 ;

2)若點在反比例函數(shù)的圖象上,則關(guān)于的方程是半等分根方程嗎?并說明理由;

3)如果方程是半等分根方程,且相異兩點,都在拋物線上,試說明方程的一個根為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某社區(qū)今年準備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共100間,這三類養(yǎng)老專用房間分別為單人間(1個養(yǎng)老床位),雙人間(2個養(yǎng)老床位),三人間(3個養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在10至30之間(包括10和30),且雙人間的房間數(shù)是單人間的2倍,設規(guī)劃建造單人間的房間數(shù)為.

(1)根據(jù)題意,填寫下表:

單人間的房間數(shù)

10

30

雙人間的房間數(shù)

_________

60

三人間的房間數(shù)

70

_________

_________

養(yǎng)老床位數(shù)

260

_________

_________

(2)若該養(yǎng)老中心建成后可提供養(yǎng)老床位200個,求的值;

(3)求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個?最少提供養(yǎng)老床位多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個草莓采摘園為吸引顧客,在草莓銷售價格相同的基礎上分別推出優(yōu)惠方案,甲園:顧客進園需購買門票,采摘的草莓按六折優(yōu)惠.乙園:顧客進園免門票,采摘草莓超過一定數(shù)量后,超過的部分打折銷售.活動期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費用y1元,若在乙園采摘需總費用y2元, y1,y2x之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是(

A.甲園的門票費用是60

B.草莓優(yōu)惠前的銷售價格是40/kg

C.乙園超過5 kg后,超過的部分價格優(yōu)惠是打五折

D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費用相同

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,以為直徑的,交于點,且交直線于點,連接

如圖1,求證:;

如圖2為鈍角時,過點于點求證:

如圖3,在的條件下,在∠BDF的內(nèi)部作,使分別交于點于點,若,求的長.

查看答案和解析>>

同步練習冊答案