【題目】已知二次函數(shù)與x軸有交點(diǎn).
(1)求m的取值范圍;
(2)如果該二次函數(shù)的圖像與x軸的交點(diǎn)分別為(x1,0),(x2,0),且2 x1 x2+ x1+ x2≥20,求m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一棵樹(shù)高h(yuǎn)(m)與生長(zhǎng)時(shí)間n(年)之間有一定關(guān)系,請(qǐng)你根據(jù)下表中數(shù)據(jù),寫出h(m)與n(年)之間的關(guān)系式:_____.
n/年 | 2 | 4 | 6 | 8 | … |
h/m | 2.6 | 3.2 | 3.8 | 4.4 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l,2表示兩人離A地的距離s(m)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)表示甲離A地的距離與時(shí)間關(guān)系的圖象是 (填l1或l2);甲的速度是 (km/h);乙的速度是 (km/h);
(2)甲出發(fā)多長(zhǎng)時(shí)間后兩人相遇?(利用方程解決)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,得到Cn,若點(diǎn)P(2017,m)在拋物線Cn上,則m為( )
A. 1 B. ﹣1 C. 2 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過(guò)點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度數(shù).
(2)圖(1)所示的圖形中,有點(diǎn)像我們常見(jiàn)的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,觀察“規(guī)形圖”圖(2),試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)請(qǐng)你直接利用以上結(jié)論,解決以下問(wèn)題:
①如圖(3),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,若∠A=42°,則∠ABX+∠ACX= °.
②如圖(4),DC平分∠ADB,EC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度數(shù).
③如圖(5),∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=68°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,AB=,AD=4,在BC邊上取點(diǎn)E,使BE=AB,將△ABE向左平移到△DCF的位置,得到四邊形AEFD.
(1)求證:四邊形AEFD是菱形;
(2)如圖2,將△DCF繞點(diǎn)D旋轉(zhuǎn)至△DGA,連接GE,求線段GE的長(zhǎng);
(3)如圖3,設(shè)P、Q分別是EF、AE上的兩點(diǎn),且∠PDQ=67.5°,試探究線段PF、AQ、PQ之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),正方形的頂點(diǎn)、分別在軸與軸上,已知正方形邊長(zhǎng)為3,點(diǎn)為軸上一點(diǎn),其坐標(biāo)為,連接,點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿折線的方向向終點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒.
(1)連接,當(dāng)點(diǎn)在線段上運(yùn)動(dòng),且滿足時(shí),求直線的表達(dá)式;
(2)連接、,求的面積關(guān)于的函數(shù)表達(dá)式;
(3)點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)位置使得為等腰三角形,若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com