如圖,梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,直線MN為梯形ABCD的對稱軸,P為MN上一動點,那么PC+PD的最小值為  

考點:

等腰梯形的性質(zhì);軸對稱-最短路線問題.

專題:

壓軸題;動點型.

分析:

因為直線MN為梯形ABCD的對稱軸,所以當(dāng)A、P、C三點位于一條直線時,PC+PD有最小值.

解答:

解:連接AC交直線MN于P點,P點即為所求.

∵直線MN為梯形ABCD的對稱軸,

∴AP=DP,

∴當(dāng)A、P、C三點位于一條直線時,PC+PD=AC,為最小值,

∵AD=DC=AB,AD∥BC,

∴∠DCB=∠B=60°,

∵AD∥BC,

∴∠ACB=∠DAC,

∵AD=CD,

∴∠DAC=∠DCA,

∴∠DAC=∠DCA=∠ACB

∵∠ACB+∠DCA=60°,

∴∠DAC=∠DCA=∠ACB=30°,

∴∠BAC=90°,

∵AB=1,∠B=60°

∴AC=tan60°×AB=×1=

∴PC+PD的最小值為

點評:

此題主要考查了等腰梯形的性質(zhì)、軸對稱的性質(zhì),對應(yīng)點的連線與對稱軸的位置關(guān)系是互相垂直,對應(yīng)點所連的線段被對稱軸垂直平分,對稱軸上的任何一點到兩個對應(yīng)點之間的距離相等,對應(yīng)的角、線段都相等.解題關(guān)鍵是分析何時PC+PD有最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊答案