在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點A、C分別在y軸、x軸正半軸上,點P在AB上,PA=1,AO=2.經(jīng)過原點的拋物線y=mx2-x+n的對稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點放在P點處,兩直角邊恰好分別經(jīng)過點O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開始,繞點P順時針旋轉(zhuǎn),兩直角邊分別交OA、OC于點E、F,當(dāng)點E和點A重合時停止旋轉(zhuǎn).請你觀察、猜想,在這個過程中,數(shù)學(xué)公式的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出數(shù)學(xué)公式的值.
②設(shè)(1)中的拋物線與x軸的另一個交點為D,頂點為M,在①的旋轉(zhuǎn)過程中,是否存在點F,使△DMF為等腰三角形?若不存在,請說明理由.

解:(1)∵拋物線y=mx2-x+n經(jīng)過原點,∴n=0.
∵對稱軸為直線x=2,∴-=2,解得m=
∴拋物線的解析式為:y=x2-x.

(2)①的值不變.理由如下:
如答圖1所示,過點P作PG⊥x軸于點G,則PG=AO=2.

∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF.
在Rt△PAE與Rt△PGF中,
∵∠APE=∠GPF,∠PAE=∠PGF=90°,
∴Rt△PAE∽Rt△PGF.
==
②存在.
拋物線的解析式為:y=x2-x,
令y=0,即x2-x=0,解得:x=0或x=4,∴D(4,0).
又y=x2-x=(x-2)2-1,∴頂點M坐標(biāo)為(2,-1).
若△DMF為等腰三角形,可能有三種情形:
(I)FM=FD.如答圖2所示:

過點M作MN⊥x軸于點N,則MN=1,ND=2,MD===
設(shè)FM=FD=x,則NF=ND-FD=2-x.
在Rt△MNF中,由勾股定理得:NF2+MN2=MF2,
即:(2-x)2+1=x2,解得:x=,
∴FD=,OF=OD-FD=4-=
∴F(,0);
(II)若FD=DM.如答圖3所示:

此時FD=DM=,∴OF=OD-FD=4-
∴F(4-,0);
(III)若FM=MD.
由拋物線對稱性可知,此時點F與原點O重合.
而由題意可知,點E與點A重合后即停止運動,故點F不可能運動到原點O.
∴此種情形不存在.
綜上所述,存在點F(,0)或F(4-,0),使△DMF為等腰三角形.
分析:(1)根據(jù)①過原點,②對稱軸為直線x=2這兩個條件確定拋物線的解析式;
(2)①如答圖1所述,證明Rt△PAE∽Rt△PGF,則有==,的值是定值,不變化;
②若△DMF為等腰三角形,可能有三種情形,需要分類討論,避免漏解.
點評:本題是二次函數(shù)綜合題型,難度不大.試題的背景是圖形的旋轉(zhuǎn),需要對旋轉(zhuǎn)的運動過程有清楚的理解;第(3)問主要考查了分類討論的數(shù)學(xué)思想,需要考慮全面,避免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=-
4
9
(x-2)2
+c與x軸交于A、B兩點(點A在點B的左側(cè)),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=
2
5
5

(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F(xiàn),若
HE
HF
=
1
2
時,求點P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQ交x軸于點G,當(dāng)Q點在拋物線上運動時,是否存在點Q,使△ANG與△ADM相似?若存在,求出所有符合條件的精英家教網(wǎng)直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2-2ax+b與x軸的一個交點為A(-1,0),另一個交精英家教網(wǎng)點B在A點的右側(cè);交y軸于(0,-3).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為C,拋物線上一點D的坐標(biāo)為(-3,12),在x軸上是否存在一點P,使以點P、B、C為頂點的三角形與△ABD相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,當(dāng)點P達(dá)到點C時,點P停止運動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)如圖,已知在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c(a>0)與x軸相交于A(-1,0),B(3,0)兩點,對稱軸l與x軸相交于點C,頂點為點D,且∠ADC的正切值為
12

(1)求頂點D的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)F點是拋物線上的一點,且位于第一象限,連接AF,若∠FAC=∠ADC,求F點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動,并使B、C兩點始終分別位于y軸、x軸的正半軸上,直角頂點A與原點O位于BC兩側(cè).
(1)取BC中點D,問OD+DA是否發(fā)生改變,若會,說明理由;若不會,求出OD+DA;
(2)你認(rèn)為OA的長度是否會發(fā)生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當(dāng)OA最長時A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

同步練習(xí)冊答案