求證:對(duì)任何整數(shù)x和y,下式的值都不會(huì)等于33.
x5+3x4y-5x3y2-15x2y3+4xy4+12y5
分析:33不可能分解為四個(gè)以上不同因數(shù)的積,于是將問(wèn)題轉(zhuǎn)化為只需證明原式可分解為四個(gè)以上因式的乘積即可.對(duì)x5+3x4y-5x3y2-15x2y3+4xy4+12y5進(jìn)行因式分解,先提取公因式(x+3y),再利用十字相差法,平方差公式逐步進(jìn)行分解,最后得到最簡(jiǎn)分式.問(wèn)題得以解決.
解答:解:
原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5
=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)
=(x+3y)(x4-5x2y2+4y4
=(x+3y)(x2-4y2)(x2-y2
=(x+3y)(x-2y)(x+2y)(x+y)(x-y)
當(dāng)y=0時(shí),原式=x5≠33;
當(dāng)y≠0時(shí),x+3y、x-y、x+y、x-2y、x+2y互不相同,而33不可能分解為3個(gè)以上不同因數(shù)的積
∴x5+3x4y-5x3y2-15x2y3+4xy4+12y5的值不會(huì)等于33.
點(diǎn)評(píng):本題考查的是提取公因式法、平方差公式因式分解.解決本題的關(guān)鍵是將x5+3x4y-5x3y2-15x2y3+4xy4+12y5分解為四個(gè)以上不同因數(shù)的積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

求證:對(duì)任何整數(shù)x和y,下式的值都不會(huì)等于33.
x5+3x4y-5x3y2-15x2y3+4xy4+12y5

查看答案和解析>>

同步練習(xí)冊(cè)答案