分析 (1)根據(jù)已知條件和角的和差得到∠BAC=∠DAE,由于∠ACB=∠ADE,即可得到結(jié)論;
(2)根據(jù)相似三角形的性質(zhì)得到$\frac{AB}{AC}=\frac{AE}{AD}$,由∠BAE=∠CAD,推出△ABE∽△ACD,由相似三角形的性質(zhì)即可得到結(jié)論.
解答 證明:(1)∵∠BAE=∠DAC,∠BAC=∠BAE-∠CAE,∠DAE=∠DAC-∠CAE,
∴∠BAC=∠DAE,
∵∠ACB=∠ADE,
∴△ABC∽△AED;
(2)∵△ABC∽△AED,
∴$\frac{AB}{AC}=\frac{AE}{AD}$,
∵∠BAE=∠CAD,
∴△ABE∽△ACD,
∴$\frac{BE}{CD}=\frac{AB}{AC}$,
即:BE•AC=CD•AB.
點(diǎn)評(píng) 此題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 1:4 | C. | 1:8 | D. | 1:16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com