某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?
(2)根據該校實際情況,需購買電子白板和筆記本電腦的總數為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數不超過購買電子白板數量的3倍,該校有哪幾種購買方案?
(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?
(1)購買1塊電子白板需要15000元,一臺筆記本電腦需要4000元(2)有三種購買方案:方案一:購買筆記本電腦295臺,則購買電子白板101塊;方案二:購買筆記本電腦296臺,則購買電子白板100塊;方案三:購買筆記本電腦297臺,則購買電子白板99塊。(3)當購買筆記本電腦297臺、購買電子白板99塊時,最省錢,共需費用2673000元
【解析】解:(1)設購買1塊電子白板需要x元,一臺筆記本電腦需要y元,由題意得:
,解得:。
答:購買1塊電子白板需要15000元,一臺筆記本電腦需要4000元。
(2)設購買購買電子白板a塊,則購買筆記本電腦(396﹣a)臺,由題意得:
,解得:。
∵a為整數,∴a=99,100,101,則電腦依次買:297,296,295。
∴該校有三種購買方案:
方案一:購買筆記本電腦295臺,則購買電子白板101塊;
方案二:購買筆記本電腦296臺,則購買電子白板100塊;
方案三:購買筆記本電腦297臺,則購買電子白板99塊。
(3)設購買筆記本電腦數為z臺,購買筆記本電腦和電子白板的總費用為W元,
則W=4000z+15000(396﹣z)=﹣11000z+5940000,
∵W隨z的增大而減小,∴當z=297時,W有最小值=2673000(元)
∴當購買筆記本電腦297臺、購買電子白板99塊時,最省錢,共需費用2673000元。
(1)設購買1塊電子白板需要x元,一臺筆記本電腦需要y元,由題意得等量關系:①買1塊電子白板的錢=買3臺筆記本電腦的錢+3000元,②購買4塊電子白板的費用+5臺筆記本電腦的費用=80000元,由等量關系可得方程組,解方程組可得答案。
(2)設購買購買電子白板a塊,則購買筆記本電腦(396﹣a)臺,由題意得不等關系:①購買筆記本電腦的臺數≤購買電子白板數量的3倍;②電子白板和筆記本電腦總費用≤2700000元,根據不等關系可得不等式組,解不等式組,求出整數解即可。
(3)由于電子白板貴,故少買電子白板,多買電腦,根據(2)中的方案確定買的電腦數與電子白板數,再算出總費用。
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012年初中畢業(yè)升學考試(四川廣安卷)數學(帶解析) 題型:解答題
某學校為了改善辦學條件,計劃購置一批電子白板和一批筆記本電腦,經投標,購買1塊電子白板比買3臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買1塊電子白板和一臺筆記本電腦各需多少元?
(2)根據該校實際情況,需購買電子白板和筆記本電腦的總數為396,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數不超過購買電子白板數量的3倍,該校有哪幾種購買方案?
(3)上面的哪種購買方案最省錢?按最省錢方案購買需要多少錢?
查看答案和解析>>
科目:初中數學 來源:2009年湖北省鄂州市一中中考數學模擬試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com