【題目】(選做題)包括兩個(gè)小題,請(qǐng)選定其中一個(gè)小題用一元一次方程作答

A.一根尼龍繩,小江第一次用去它的一半少米,第二次用去米,結(jié)果還剩下原來的,試問這根尼龍繩原來有多長(zhǎng)?

B.小蘇、小江家相距千米且附近均設(shè)有火車站,一列慢車從小江家附近的火車站駛往小蘇家附近的火車站,速度為,一列快車從小蘇家附近的火車站駛往小江家附近的火車站,速度為,若兩車同時(shí)出發(fā),多少時(shí)間后兩車相距?

【答案】A、這根尼龍繩原來有8米;B、兩車同時(shí)出發(fā),3小時(shí)或4小時(shí)后兩車相距.

【解析】

A、設(shè)這根尼龍繩原來有x米,則根據(jù)題意,列出方程,解方程即可得到答案;

B、設(shè)y小時(shí)后兩車相距100千米,根據(jù)題意,列出方程,解方程即可得到答案.

解:A、設(shè)這根尼龍繩原來有x米,則根據(jù)題意,得:

,

解得:

∴這根尼龍繩原來有8米;

B、設(shè)y小時(shí)后兩車相距100千米,根據(jù)題意,

當(dāng)兩車相遇前,距離100千米,則:

解得:;

當(dāng)兩車相遇后,距離100千米,則:

解得:;

∴兩車同時(shí)出發(fā),3小時(shí)或4小時(shí)后兩車相距.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C

1)求拋物線的解析式;

2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t

設(shè)拋物線對(duì)稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求出當(dāng)△CEF△COD相似時(shí),點(diǎn)P的坐標(biāo);

是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式變形不一定正確的是( .

A. x=y, x-5=y-5B. x=y, ax=ay

C. x=y, 3-2x=3-2yD. x=y,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),且∠EAF=45°,將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

(1)EA是∠QED的平分線;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】yax+b(其中ab是常數(shù),x、y是未知數(shù))這樣的方程稱為“雅系二元一次方程”.當(dāng)yx時(shí),“雅系二元一次方程yax+b”中x的值稱為“雅系二元一次方程”的“完美值”.例如:當(dāng)yx時(shí),“雅系二元一次方程”y3x4化為x3x4,其“完美值”為x2

1)求“雅系二元一次方程”y5x+6的“完美值”;

2x3是“雅系二元一次方程”y3x+m的“完美值”,求m的值;

3)“雅系二元一次方程”ykx+1k0,k是常數(shù))存在“完美值”嗎?若存在,請(qǐng)求出其“完美值”,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(a﹣1x2+2x+a﹣1=0

1)若該方程有一根為2,求a的值及方程的另一根;

2)當(dāng)a為何值時(shí),方程僅有一個(gè)根?求出此時(shí)a的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),連接DE, AC于點(diǎn)F.

(1)如圖①,當(dāng)時(shí),求的值;

(2)如圖②當(dāng)DE平分∠CDB時(shí),求證:AF=OA

(3)如圖③,當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),過點(diǎn)FFGBC于點(diǎn)G,求證:CG=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABCBAD的度數(shù)比為12,周長(zhǎng)是8cm

求:(1)兩條對(duì)角線的長(zhǎng)度;(2)菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項(xiàng)目進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2).請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,乒乓球部分所對(duì)應(yīng)的圓心角度數(shù)為   ;

(4)若全校有2000名學(xué)生,則其他部分的學(xué)生人數(shù)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案