如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過(guò)A點(diǎn)作半圓的切線,與半圓相切于點(diǎn)F,與DC相交于點(diǎn)E,求BF的長(zhǎng).
考點(diǎn):切線的性質(zhì),正方形的性質(zhì)
專題:計(jì)算題
分析:連接OF,OA,OA與BF交于G,如圖,根據(jù)正方形的性質(zhì)得∠ABC=90°,利用切線的判定方法可得到AB為⊙O的切線,再根據(jù)切線長(zhǎng)定理得到AB=AF,OA平分∠BAF,則根據(jù)等腰三角形的性質(zhì)得到AG⊥BF,BG=FG,然后根據(jù)勾股定理得OA=2
5
,再利用面積法計(jì)算出BG=
4
5
5
,則BF=2BG=
8
5
5
解答:解:連接OF,OA,OA與BF交于G,如圖,
∵四邊形ABCD為正方形,
∴∠ABC=90°,
而B(niǎo)C為⊙O的直徑,
∴AB為⊙O的切線,
∵AF與半圓相切于點(diǎn),
∴AB=AF,OA平分∠BAF,
∴AG⊥BF,
∴BG=FG,
在Rt△ABO中,∵OB=2,AB=4,
∴OA=
OB2+AB2
=2
5
,
1
2
BG•OA=
1
2
OB•AB,
∴BG=
2×4
2
5
=
4
5
5

∴BF=2BG=
8
5
5
點(diǎn)評(píng):本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.也考查了切線長(zhǎng)定理.注意構(gòu)造直角三角形,利用勾股定理計(jì)算線段的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2x+k-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:(500-20x)(10+x)=6000.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),CP把△ABC的周長(zhǎng)分成相等的兩部分,請(qǐng)求出t的值;
(2)當(dāng)t為何值時(shí),△BCP為等腰三角形?(請(qǐng)直接寫(xiě)出t的值)
(3)當(dāng)t為何值時(shí),CP把△ABC的面積分成相等的兩部分,請(qǐng)求出t的值;
(4)在(3)的情況下,若過(guò)點(diǎn)P作PE∥BC,且在BC上有一點(diǎn)F,PE=CF,連結(jié)PF,BE,試探索PF與BE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

Rt△ABC中,∠A=90°,AB=2,AC=4,點(diǎn)E、F分別為AB和AC上的點(diǎn),且△AEF和△ABC相似,作AD⊥EF于點(diǎn)D,當(dāng)AE=1時(shí),AD的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點(diǎn),D是MN上任意一點(diǎn),CD、BD的延長(zhǎng)線分別與AB、AC交于F、E,若
1
CE
+
1
BF
=
1
a
(a>0),則△ABC的邊長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中,∠B=30°,AC=2,作△CDB的高DC1,作△DC1B的高C1D1,…,就這樣無(wú)限作下去,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=DC,∠ACB=50°,∠ACD=30°.則∠BAC的度數(shù)是( 。
A、50°B、60°
C、70°D、80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一輛汽車以50km/h的速度行駛,行駛的路程s(km)與行駛的時(shí)間t(h)之間的關(guān)系式為s=50t,其中變量是( 。
A、速度與路程
B、速度與時(shí)間
C、路程與時(shí)間
D、三者均為變量

查看答案和解析>>

同步練習(xí)冊(cè)答案