【題目】如圖,小紅在A處用測量儀測得某矩形廣告牌頂端C的仰角為30°,然后前進10m到達B點,此時測得D處的仰角為60°,已知小紅的身高AE=1.5m,廣告牌CD的高度為2m,請你根據(jù)以上數(shù)據(jù)計算GH的長.
【答案】
【解析】
延長CD分別交AB、EF于M、N.這樣就形成了Rt△BDM和Rt△CAM. Rt△BDM中,假設(shè)BM=x,根據(jù)=tan60°,能夠得出DM、CM、AM的字母表達式,再根據(jù)Rt△CAM中,∠CAM=30° ,能夠得出=,從而得出CM= AM,將上面所得AM,CM的字母表達式代入即可得x,從而得到DM的值,最后得出CN的值.
.解:延長CD分別交AB、EF于M、N.
∴AB=10m、 AE=MN=1.5m、CD=2m、∠CAM=30° 、∠DBM=60°,
在Rt△BDM中,∠DBM=60°,設(shè)BM=x,
∴=tan60°=.
∴DM=x,CM=2+ AM=10+x,
在Rt△CAM中, ∠CAM=30° ,
則cot30°=,
∴CM= AM,
∴,
,
∴DM =5-3,
∴CN=2+5-3+1.5=(5)m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A、B均為格點.
(I).的長等于_________;
(II).請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點,使得以為底邊的等腰三角形的面積等于,并簡要說明點的位置是如何找到的(不要求證明);_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)公開報道,2017年全國教育經(jīng)費總投入為42557億元,比上年增長9.43%,其中投入在各學(xué)段的經(jīng)費占比(即所占比例)如圖,根據(jù)圖中提供的信息解答下列問題.
(1)在2017年全國教育經(jīng)費總投入中,義務(wù)教育段的經(jīng)費總投入應(yīng)該是多少億元?
(2)2016年全國教育經(jīng)費總投入約為多少億元?(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠制作兩種手工藝品,每天每件獲利比多105元,獲利30元的與獲利240元的數(shù)量相等.
(1)制作一件和一件分別獲利多少元?
(2)工廠安排65人制作,兩種手工藝品,每人每天制作2件或1件.現(xiàn)在在不增加工人的情況下,增加制作.已知每人每天可制作1件(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數(shù)量相等.設(shè)每天安排人制作,人制作,寫出與之間的函數(shù)關(guān)系式.
(3)在(1)(2)的條件下,每天制作不少于5件.當(dāng)每天制作5件時,每件獲利不變.若每增加1件,則當(dāng)天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(元)的最大值及相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=58°,則∠ABC的度數(shù)為( )
A. 29°B. 30°C. 31°D. 32°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金堂三溪鎮(zhèn)被中國柑桔研究所譽為“中國臍橙第一鄉(xiāng)”,2016年12月某公司到三溪鎮(zhèn)以2.5元/千克購得臍橙12000千克,這些臍橙的銷售期最多還有60天,60天后庫存的臍橙不能再銷售,需要當(dāng)垃圾處理,處理費為0.1元/千克,經(jīng)測算,臍橙的銷售價格定為8元/千克時,每天可售出100千克;銷售單價每降低0.5元,每天可多售出50千克.
(1).如果按8元/千克的價格銷售,能否在60天內(nèi)售完?這些臍橙按此價格銷售,獲得的利潤是多少?
(2).如果按6元/千克的價格銷售,這些臍橙獲得的利潤是多少?當(dāng)這些臍橙銷售價格定為x()元/千克時,可以使公司每天獲得利潤最大,每天的最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點,與反比例函數(shù)在第二象限內(nèi)的圖象相交于點.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某磨具廠共有六個生產(chǎn)車間,第一、二、三、四車間毎天生產(chǎn)相同數(shù)量的產(chǎn)品,第五、六車間每天生產(chǎn)的產(chǎn)品數(shù)量分別是第一車間每天生產(chǎn)的產(chǎn)品數(shù)量的和.甲、乙兩組檢驗員進駐該廠進行產(chǎn)品檢驗,在同時開始檢驗產(chǎn)品時,每個車間原有成品一樣多,檢驗期間各車間繼續(xù)生產(chǎn).甲組用了6天時間將第一、二、三車間所有成品同時檢驗完;乙組先用2天將第四、五車間的所有成品同時檢驗完后,再用了4天檢驗完第六車間的所有成品(所有成品指原有的和檢驗期間生產(chǎn)的成品).如果每個檢驗員的檢驗速度一樣,則甲、乙兩組檢驗員的人數(shù)之比是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時,求點G的坐標(biāo);
(3)①在y軸上存在一點H,連接EH、HF,當(dāng)點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標(biāo);
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com