【題目】某地計(jì)劃用120180天(含120180天)的時間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬米

1)設(shè)平均每天的工作量為x(單位:萬米),用來表示運(yùn)輸公司完成任務(wù)所需的時間,并寫出x的取值范圍.

2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方是原計(jì)劃的1.2倍,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少米?

【答案】12≤x≤3;(2)原計(jì)劃每天運(yùn)送2.5萬米3,實(shí)際每天運(yùn)送3萬米3

【解析】

1)利用每天的工作量×天數(shù)=土方總量可以得到兩個變量之間的函數(shù)關(guān)系;

2)根據(jù)工期比原計(jì)劃減少了24找到等量關(guān)系并列出方程求解即可;

解:(1)由題意得,,把代入,得

代入,得

∴自變量的取值范圍為:,

x的取值范圍為

2)設(shè)原計(jì)劃平均每天運(yùn)送土石方萬米,則實(shí)際平均每天運(yùn)送土石方萬米,

根據(jù)題意得:,

解得:

經(jīng)檢驗(yàn)為原方程的根,

答:原計(jì)劃每天運(yùn)送萬米,實(shí)際每天運(yùn)送3萬米

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊含30°(即CAB=30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN重合,其量角器最外緣的讀數(shù)是從N點(diǎn)開始(即N點(diǎn)的讀數(shù)為0),現(xiàn)有射線CP繞著點(diǎn)C從CA順時針以每秒2度的速度旋轉(zhuǎn)到與ACB外接圓相切為止.在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.

(1)當(dāng)射線CP與ABC的外接圓相切時,求射線CP旋轉(zhuǎn)度數(shù)是多少?

(2)當(dāng)射線CP分別經(jīng)過ABC的外心、內(nèi)心時,點(diǎn)E處的讀數(shù)分別是多少?

(3)當(dāng)旋轉(zhuǎn)7.5秒時,連接BE,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC的每一個頂點(diǎn)都在格點(diǎn)上,AB5,點(diǎn)DAB邊上的動點(diǎn)(點(diǎn)D不與點(diǎn)A,B重合),將線段AD沿直線AC翻折后得到對應(yīng)線段AD1,將線段BD沿直線BC翻折后得到對應(yīng)線段BD2,連接D1D2,則四邊形D1ABD2的面積的最小值是 ____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO直徑,ACO的弦,過O外的點(diǎn)DDEOA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長交AB的延長線于點(diǎn)P,且D=2∠A,作CHAB于點(diǎn)H

1)判斷直線DCO的位置關(guān)系,并說明理由;

2)若HB=2,cosD=,請求出AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,點(diǎn)、分別是等邊、上的點(diǎn),連接、,若,求證:

(2)如圖2,在(1)問的條件下,點(diǎn)的延長線上,連接延長線于點(diǎn),.若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).

求拋物線的表達(dá)式;

若將拋物線向下平移4個單位,點(diǎn)P平移后的對應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,CA=CB=6,AB=6.點(diǎn)D在線段AB上運(yùn)動(不與A、B重合),將CADCBD分別沿直線CA、CB翻折得到CAECBF,連接EF,則CEF面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點(diǎn),AE=2,AEQ沿EQ翻折形成FEQ,連接PF,PD,則PF+PD的最小值是____

查看答案和解析>>

同步練習(xí)冊答案