如圖,點A、B、C在⊙上,且BO=BC,則=        .
30°.

試題分析:由BO=BC,及OB=OC,得到三角形BOC為等邊三角形,利用等邊三角形的性質得到∠BOC=60°,利用同弧所對的圓心角等于所對圓周角的2倍即可求出所求∠BAC=∠BAC=30°.
故答案是30°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,方格紙中每個小正方形的邊長均為1,△ABC的頂點均在小正方形的頂點處.

(1)以點A為旋轉中心,把△ABC順時針旋轉90°,畫出旋轉后的△;
(2)在(1)的條件下,求點C運動到點所經過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P是⊙O外一點,PA⊥PB,弦BC//OP,求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點D,且D在以AE為直徑的⊙O上.

(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經過A、D兩點,且∠AOD=90°,則圓心O到弦AD的距離是           cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

翻轉類的計算問題在全國各地的中考試卷中出現(xiàn)的頻率很大,因此初三(5)班聰慧的小菲同學結合2011年蘇州市數(shù)學中考卷的倒數(shù)第二題對這類問題進行了專門的研究。你能和小菲一起解決下列各問題嗎?(以下各問只要求寫出必要的計算過程和簡潔的文字說明即可。)
(1)如圖①,小菲同學把一個邊長為1的正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片向右翻轉一周回到初始位置,求頂點O所經過的路程;并求頂點O所經過的路線;

圖①
(2)小菲進行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片向右翻轉若干次.她提出了如下問題:

圖②
問題①:若正方形紙片OABC接上述方法翻轉一周回到初始位置,求頂點O經過的路程;
問題②:正方形紙片OABC按上述方法經過多少次旋轉,頂點O經過的路程是。
(3)①小菲又進行了進一步的拓展研究,若把這個正三角形的一邊OA與這個正方形的一邊OA重合(如圖3),然后讓這個正三角形在正方形上翻轉,直到正三角形第一次回到初始位置(即OAB的相對位置和初始時一樣),求頂點O所經過的總路程。

圖③
②若把邊長為1的正方形OABC放在邊長為1的正五邊形OABCD上翻轉(如圖④),直到正方形第一次回到初始位置,求頂點O所經過的總路程。

圖④
(4)規(guī)律總結,邊長相等的兩個正多邊形,其中一個在另一個上翻轉,當翻轉后第一次回到初始位置時,該正多邊形翻轉的次數(shù)一定是兩正多邊形邊數(shù)的___________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1和⊙O2相切,⊙O1的半徑為4.5cm,⊙O2的半徑為2cm,則O1O2的長為(  )
A.5cm或13cmB.2.5cmC.6.5cmD.2.5cm或6.5cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,用兩道繩子捆扎著三瓶直徑均為6cm的瓶子,若不計繩子接頭,則捆繩總長為__________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知△ABC的三邊長分別是6,8,10,則△ABC外接圓的直徑是__________.

查看答案和解析>>

同步練習冊答案