在6×6的正方形網(wǎng)格中,△ABC的位置如圖所示,則cosB=
4
5
4
5
分析:首先過(guò)A作AD⊥BC,再利用勾股定理計(jì)算出AB的長(zhǎng),再利用余弦定理計(jì)算出cosB即可.
解答:解:過(guò)A作AD⊥BC,
∵AD=3,BD=4,
∴AB=
32+42
=5,
∴cosB=
BD
AB
=
4
5
,
故答案為:
4
5
點(diǎn)評(píng):此題主要考查了銳角三角函數(shù)定義,關(guān)鍵是掌握余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在4×4的正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)(端點(diǎn))分別按下列要求畫(huà)出圖:
(1)在左圖中,畫(huà)一條線段AB,使AB=2
2
;
(2)在右圖中,畫(huà)一個(gè)直角三角形,使它三邊長(zhǎng)均為無(wú)理數(shù).
 精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在5×5的正方形網(wǎng)格中,以AB為邊畫(huà)直角△ABC,使點(diǎn)C在格點(diǎn)上,滿足這樣條件的點(diǎn)C共
8
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•岳池縣模擬)在6×8的正方形網(wǎng)格中建立了如圖所示的平面直角坐標(biāo)系xoy,已知每個(gè)最小正方形邊長(zhǎng)為1,將圖中的OA繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到OA′,則A′點(diǎn)坐標(biāo)為
(-3,-2)
(-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在10×10的正方形網(wǎng)格紙中(每個(gè)小方格的邊長(zhǎng)都是1個(gè)單位)有一個(gè)△ABC,請(qǐng)?jiān)诰W(wǎng)格紙中畫(huà)出以點(diǎn)O為旋轉(zhuǎn)中心把△ABC按順時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作圖題
(1)在圖中找出點(diǎn)P,使得點(diǎn)P到C、D兩點(diǎn)的距離相等,并且點(diǎn)P到OA、OB的距離也相等.(尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)如圖,在10×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為單位1,將△ABC向右平移7個(gè)單位,得到△A′B′C′,再把△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)90°,得到△A″B″C″.請(qǐng)你畫(huà)出△A′B′C′和△A″B″C″.

查看答案和解析>>

同步練習(xí)冊(cè)答案