如圖所示,已知拋物線的對稱軸為直線x=4,該拋物線與x軸交于A、B兩點,與y軸交于C點,且A、C坐標為(2,0)、(0,3).
(1)求此拋物線的解析式;
(2)拋物線上有一點P,使以PC為直徑的圓過B點,求P的坐標;
(3)在滿足(2)的條件下,x軸上是否存在點E,使得△COE與△PBC相似?若存在,求出E的坐標;若不存在,請說明理由.
(1)設(shè)拋物線的解析式是y=a(x-4)2+b,
根據(jù)題意得:
4a+b=0
16a+b=3
,
解得:
a=
1
4
b=-1
,
則函數(shù)的解析式是:y=
1
4
x2-2x+3;

(2)設(shè)點B坐標為B(a,0),則
2+a
2
=4(拋物線對稱軸的表示),
解得a=6,
∴點B(6,0),
又∵點C坐標為C(0,3),PC為直徑的圓過B點,
∴過P作PE⊥x軸,則△PBE△BCO,

PE
BE
=
OB
OC
=
6
3
=2,
∴設(shè)點P的坐標為(m,n),
則n=2(m-6)①,
又點P在拋物線上,
∴n=
1
4
m2-2m+3②,
①②聯(lián)立解得m1=10,m2=6(舍去),
∴n=2(10-6)=8,
∴點P的坐標為P(10,8);

(3)∵PE⊥x軸,
∴在Rt△PBE中,PB
(10-6)2+82
=4
5

在Rt△OBC中,BC=
32+62
=3
5

設(shè)點E坐標為(x,0),
∵△COE與△PBC相似,
∴①若CO與PB是對應(yīng)邊,則
3
4
5
=
|x|
3
5
,
解得|x|=
9
4
,
∴x=±
9
4
,
②若CO與BC是對應(yīng)邊,則
3
3
5
=
|x|
4
5

解得|x|=4,
∴x=±4,
∴在x軸上存在點E,使得△COE與△PBC相似,點E坐標為E(±
9
4
,0),E(±4,0).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知二次函數(shù)圖象的頂點為原點,直線y=
1
2
x+4
的圖象與該二次函數(shù)的圖象交于A點(8,8),直線與x軸的交點為C,與y軸的交點為B.
(1)求這個二次函數(shù)的解析式與B點坐標;
(2)P為線段AB上的一個動點(點P與A,B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于D點,與x軸交于點E.設(shè)線段PD的長為h,點P的橫坐標為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點P,使得以點P、D、B為頂點的三角形與△BOC相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NP⊥BC,交AC于P,連接MP.已知動點運動了x秒.
(1)P點的坐標為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時x的值;
(3)請你探索:當x為何值時,△MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形的長是4cm,寬是3cm,如果將長和寬都增加xcm,那么面積增加ycm2
(1)求y與x的函數(shù)表達式;
(2)求當邊長增加多少時,面積增加8cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,拋物線經(jīng)過點A(12,0)、B(-4,0)、C(0,-12).頂點為M,過點A的直線y=kx-4交y軸于點N.
(1)求該拋物線的函數(shù)關(guān)系式和對稱軸;
(2)試判斷△AMN的形狀,并說明理由;
(3)將AN所在的直線l向上平移.平移后的直線l與x軸和y軸分別交于點D、E(如圖②).當直線l平移時(包括l與直線AN重合),在拋物線對稱軸上是否存在點P,使得△PDE是以DE為直角邊的等腰直角三角形?若存在,直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知等腰直角三角形的斜邊長為x,面積為y,則y與x的函數(shù)關(guān)系式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某瓜果基地市場部為指導(dǎo)某地某種蔬菜的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進行了調(diào)查的基礎(chǔ)上,對今年這種蔬菜上市后的市場售價和生產(chǎn)成本進行了預(yù)測,提供了兩個方面的信息.如圖甲、乙兩圖.
注:兩圖中的每個實心黑點所對應(yīng)的縱坐標分別指相應(yīng)月份的售價和成本,生產(chǎn)成本6月份最低;圖甲的圖象是線段,圖乙的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,如圖①所示;種植花卉的利潤y2與投資量x成二次函數(shù)關(guān)系,如圖②所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤,他能獲取的最大利潤是多少?

查看答案和解析>>

同步練習冊答案