已知:如圖,菱形ABCD中,∠BAD=120°,動(dòng)點(diǎn)P在直線BC上運(yùn)動(dòng),作
∠APM=60°,且直線PM與直線CD相交于點(diǎn)Q,Q點(diǎn)到直線BC的距離為QH.
(1)若P在線段BC上運(yùn)動(dòng),求證:CP=DQ.
(2)若P在線段BC上運(yùn)動(dòng),探求線段AC,CP,CH的一個(gè)數(shù)量關(guān)系,并證明你的結(jié)論.
(1)連接AQ,作PE∥CD交AC于E,則△CPE是等邊三角形,∠EPQ=∠CQP.
又∠APE+∠EPQ=60°,∠CQP+∠CPQ=60°,
∴∠APE=∠CPQ,
又∵∠AEP=∠QCP=120°,PE=PC,
∴△APE≌△QPC,∴AE=QC,AP=PQ,
∴△APQ是等邊三角形,∴∠2+∠3=60°,
∵∠1+∠2=60°,∴∠1=∠3,
∴△AQD≌△APC,∴CP=DQ.
(2)AC=CP+2CH.證明如下:
∵AC=CD,CD=CQ+QD,∴AC=CQ+QD,
∵CP=DQ,∴AC=CQ+PC,
又∵∠CHQ=90°,∠QCH=60°,∴∠CQH=30°,
∴CQ=2CH,∴AC=CP+2CH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,每個(gè)小正方形的邊長(zhǎng)為1,△ABC的三邊a,b,c的大小關(guān)系是( )
A.a<c<b B.a<b<c
C.c<a<b D.c<b<a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在矩形ABCD中,E,F分別是邊AB,CD的中點(diǎn),連接AF,CE .
(1)求證:△BEC≌△DFA.
(2)求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取FG=BD,連接BG,DF.若AG=13,CF=6,則四邊形BDFG的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知正比例函數(shù)y=kx(k≠0),點(diǎn)(2,-3)在函數(shù)圖象上,則y隨x的增大而 (增大或減小).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=(2m+1)x2+(1-2m)x(m為常數(shù))是正比例函數(shù),則m的值為( )
A.m> B.m= C.m< D.m=-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某商場(chǎng)6月份隨機(jī)調(diào)查了6天的營(yíng)業(yè)額,結(jié)果分別如下(單位:萬(wàn)元):
2.8,3.2,3.4,3.0,3.1,3.7,試估算該商場(chǎng)6月份的總營(yíng)業(yè)額大約是( )
A.84萬(wàn)元 B.96萬(wàn)元
C.93萬(wàn)元 D.111萬(wàn)元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,給出下列四個(gè)條件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.
從中任選兩個(gè)條件,能使四邊形ABCD為平行四邊形的選法有( )
A.3種 B.4種 C.5種 D.6種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com