如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關(guān)系的圖象是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:過A作AH⊥x軸于H,根據(jù)勾股定理和含30度角的直角三角形的性質(zhì)求出AH,根據(jù)三角形的面積即可求出答案.
解答:解:過A作AH⊥x軸于H,
∵OA=OC=4,∠AOC=60°,
∴OH=2,
由勾股定理得:AH=2,
①當(dāng)0≤t<2時(shí),ON=t,MN=t,S=ON•MN=t2;
②2<t≤4時(shí),ON=t,S=ON•2=t.
故選C.
點(diǎn)評(píng):本題主要考查對(duì)動(dòng)點(diǎn)問題的函數(shù)圖象,勾股定理,三角形的面積,二次函數(shù)的圖象,正比例函數(shù)的圖象,含30度角的直角三角形的性質(zhì),菱形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能根據(jù)這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵,用的數(shù)學(xué)思想是分類討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案