【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段CD的長(zhǎng);
(2)當(dāng)t為何值時(shí),△CPQ與△ABC相似?
(3)當(dāng)t為何值時(shí),△CPQ為等腰三角形?
【答案】
(1)
解:∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC= BCAC= ABCD.
∴CD= = =4.8.
∴線段CD的長(zhǎng)為4.8.
(2)
解:由題可知有兩種情形,
設(shè)DP=t,CQ=t.則CP=4.8﹣t.
①當(dāng)PQ⊥CD時(shí),如圖a
∵△QCP∽△△ABC
∴ = ,即 = ,
∴t=3;
②當(dāng)PQ⊥AC,如圖b.
∵△PCQ∽△ABC
∴ = ,即 = ,解得t= ,
∴當(dāng)t為3或 時(shí),△CPQ與△△ABC相似;
(3)
解:①若CQ=CP,如圖1,
則t=4.8﹣t.
解得:t=2.4.
②若PQ=PC,如圖2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH= QC= .
∵△CHP∽△BCA.
∴ = .
∴ = ,解得t= .
③若QC=QP,
過點(diǎn)Q作QE⊥CP,垂足為E,如圖3所示.
同理可得:t= .
綜上所述:當(dāng)t為2.4秒或 秒或 秒時(shí),△CPQ為等腰三角形.
【解析】(1)先根據(jù)勾股定理求出AB的長(zhǎng),再由三角形的面積公式即可得出結(jié)論;(2)先用t表示出DP,CQ,CP的長(zhǎng),再分PQ⊥CD與PQ⊥AC兩種情況進(jìn)行討論;(3)根據(jù)題意畫出圖形,分CQ=CP,PQ=PC,QC=QP三種情況進(jìn)行討論.
【考點(diǎn)精析】通過靈活運(yùn)用等腰三角形的判定和勾股定理的概念,掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)城公司為希望小學(xué)捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購(gòu)一種型號(hào)進(jìn)行捐贈(zèng).
(1)寫出所有的選購(gòu)方案(用列表法或樹狀圖);
(2)如果在上述選購(gòu)方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn).按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,P是CD邊上的動(dòng)點(diǎn)(P點(diǎn)不與C、D重合),過點(diǎn)P作直線與BC的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP=x,△PBF的面積為S1,△PDE的面積為S2
(1)求證:BP⊥DE;
(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當(dāng)∠PBF=30°時(shí),求S1﹣S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船在B處測(cè)得燈塔A在北偏東60°的方向,另一艘貨輪在C處測(cè)得燈塔A在北偏東40°的方向,那么在燈塔A處觀看B和C時(shí)的視角∠BAC是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的每一個(gè)內(nèi)角都相等,并且每個(gè)外角都等于和它相鄰的內(nèi)角的一半.
(1)求這個(gè)多邊形是幾邊形;
(2)求這個(gè)多邊形的每一個(gè)內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到圖書館看報(bào),然后返回,他離家的距離y與離家的時(shí)間x之間的對(duì)應(yīng)關(guān)系如圖所示,如果小明在圖書館看報(bào)30分鐘,試求:
(1)小明回家的速度.
(2)小明離家50分鐘時(shí)離家的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com