若n為正整數(shù),觀察下列各式:
1
1×3
=
1
2
(1-
1
3
)
,
1
3×3
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,…根據(jù)觀察計算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
19×21
=
10
21
10
21
分析:根據(jù)題中的等式得到原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
1
19
-
1
21
),再運用乘法的分配律得原式=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
19
-
1
21
),然后計算括號內(nèi)的加減運算,再進行乘法運算即可.
解答:解:原式=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
1
19
-
1
21

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
19
-
1
21

=
1
2
(1-
1
21

=
1
2
×
20
21

=
10
21

故答案為
10
21
點評:本題考查了規(guī)律型:數(shù)字的變化類:通過從一些特殊的數(shù)字變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

用火柴棒按如右圖的方式搭成一行三角形.
(1)觀察圖形規(guī)律,填寫下表:
三角形個數(shù) 1 2 3 4 5
火柴棒個數(shù) 3
5
5
7
7
9
9
11
11
(2)照此規(guī)律搭下去,搭n個三角形時,需火柴棒
(2n+1)
(2n+1)
根;
(3)若用S表示火柴棒總數(shù),則S關(guān)于n的函數(shù)關(guān)系式是
S=2n+1
S=2n+1
;(n為大于或等于3的正整數(shù))
(4)S的取值可能為24嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

作業(yè)寶用火柴棒按如右圖的方式搭成一行三角形.
(1)觀察圖形規(guī)律,填寫下表:

三角形個數(shù)12345
火柴棒個數(shù)3________________________

(2)照此規(guī)律搭下去,搭n個三角形時,需火柴棒______根;
(3)若用S表示火柴棒總數(shù),則S關(guān)于n的函數(shù)關(guān)系式是______;(n為大于或等于3的正整數(shù))
(4)S的取值可能為24嗎?為什么?

查看答案和解析>>

同步練習冊答案