解:王剛的判斷是正確的,理由如下:
如圖,AE,BF是竹竿兩次的位置,CA和BD是兩次影子的長.
由于BF=DB=2(米),即∠D=45°,
所以,DP=OP=燈高,
在△CEA與△COP中,
∵AE⊥CP,OP⊥CP,
∴AE∥OP,
∴△CEA∽△COP即
,
設(shè)AP=x米,OP=h米則:
=
①,
DP=OP表達為2+4+1+x=h②,
聯(lián)立①②兩式得:
x=4,h=10,
∴路燈有10米長,王剛的判斷是正確的.
分析:先根據(jù)竹竿和影長之間的數(shù)量關(guān)系求得∠D=45°,∠POC=30°,找到DC與燈高之間的數(shù)量關(guān)系CD=
OP,根據(jù)線段之間是和差關(guān)系得到DC=DB+BA-CA,代入對應(yīng)數(shù)據(jù)即可求出CD長為5米,從而求出燈高為10米.
點評:此題主要考查了相似三角形的應(yīng)用,有關(guān)中心投影的題目,可利用直角三角形和相似三角形的性質(zhì)求解.本題中主要是利用了含特殊角30度,45度的直角三角形的特殊性質(zhì)來求得相關(guān)線段之間的數(shù)量關(guān)系來求燈高.要知道含45度角的直角三角形的兩條直角邊相等,含30度角的直角三角形的短直角邊等于斜邊的一半.