(2010•徐州)如圖,一個圓形轉(zhuǎn)盤被等分成五個扇形區(qū)域,上面分別標(biāo)有數(shù)字1,2,3,4,5,轉(zhuǎn)盤指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止.轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記指針指向標(biāo)有偶數(shù)所在區(qū)域的概率為P(偶數(shù)),指針指向標(biāo)有奇數(shù)所在區(qū)域的概率為P(奇數(shù)),則P(偶數(shù))    P(奇數(shù)).
【答案】分析:根據(jù)題意分別求出奇數(shù)和偶數(shù)在整個圓形轉(zhuǎn)盤中所占的比例,再進(jìn)行比較即可.
解答:解:∵一個圓形轉(zhuǎn)盤被等分成五個扇形區(qū)域,有2個偶數(shù)區(qū),3個奇數(shù)區(qū),
∴有p(偶數(shù))=,p(奇數(shù))=,所以p(偶數(shù))<p(奇數(shù)).
點(diǎn)評:本題主要考查求概率的基本的方法,屬于較簡單題目.用到的知識點(diǎn)為:概率=相應(yīng)的面積與總面積之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動點(diǎn)E、F同時從點(diǎn)B出發(fā),點(diǎn)E沿折線BA-AD-DC運(yùn)動到點(diǎn)C時停止運(yùn)動,點(diǎn)F沿BC運(yùn)動到點(diǎn)C時停止運(yùn)動,它們運(yùn)動時的速度都是1cm/s.設(shè)E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2
(2)當(dāng)點(diǎn)E在BA、DC上運(yùn)動時,分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當(dāng)t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(06)(解析版) 題型:解答題

(2010•徐州)如圖,已知A(n,-2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)求不等式kx+b-<0的解集.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省徐州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•徐州)如圖①,梯形ABCD中,∠C=90°.動點(diǎn)E、F同時從點(diǎn)B出發(fā),點(diǎn)E沿折線BA-AD-DC運(yùn)動到點(diǎn)C時停止運(yùn)動,點(diǎn)F沿BC運(yùn)動到點(diǎn)C時停止運(yùn)動,它們運(yùn)動時的速度都是1cm/s.設(shè)E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2
(2)當(dāng)點(diǎn)E在BA、DC上運(yùn)動時,分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當(dāng)t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

同步練習(xí)冊答案