【題目】某蘋(píng)果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋(píng)果,每名工人只能做其中一項(xiàng)工作.蘋(píng)果的銷(xiāo)售方式有兩種:一種是可以直接出售,另一種是可以將采摘的蘋(píng)果加工成罐頭出售.直接出售每噸獲利4 000元,加工成罐頭出售每噸獲利10 000元.采摘的工人每人可以采摘蘋(píng)果0.4噸,加工罐頭的工人每人可加工蘋(píng)果0.3噸.采摘的蘋(píng)果一部分用于加工罐頭,其余直接出售.設(shè)有x名工人進(jìn)行蘋(píng)果采摘,罐頭和蘋(píng)果全部售出后,總利潤(rùn)為y元.

1)加工成罐頭的蘋(píng)果數(shù)量為 噸,直接出售的蘋(píng)果數(shù)量為 噸.(用含x的代數(shù)式表示)

2)求yx之間的函數(shù)關(guān)系式,并求出自變量的取值范圍.

【答案】19-0.3x;0.7x-9;(2y=-200x+5400013≤x<30的整數(shù))

【解析】

1)用加工的人數(shù)(30-x)乘以0.3即可求出加工成罐頭的蘋(píng)果數(shù)量;用采摘的人數(shù)x乘以0.4即可求出采摘的蘋(píng)果數(shù)量,用采摘的量減去加工的量即可求出直接出售的蘋(píng)果數(shù)量;

2)根據(jù)總利潤(rùn)為y=直接出售的蘋(píng)果利潤(rùn)+加工成罐頭出售的利潤(rùn)可求出函數(shù)解析式;根據(jù)采摘量不小于加工量及總?cè)藬?shù)30,再由x為整數(shù)即可求出自變量的取值范圍.

解:(1)根據(jù)題意得,進(jìn)行加工的人數(shù)為(30-x)人,

∴采摘的數(shù)量為0.4x噸,加工的數(shù)量為(9-0.3x)噸,直接出售的數(shù)量為0.4x-9-0.3x=0.7x-9)噸,

故答案為:9-0.3x0.7x-9;

2y=4000×(0.7x-9+10000×(9-0.3x=-200x+54000

根據(jù)題意得,0.4x9-0.3x,解得x,

x為整數(shù),

x的取值是13x<30的整數(shù),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線(xiàn)y=x+b與雙曲線(xiàn)y=(x<0)交于點(diǎn)A(﹣1,﹣5),并分別與x軸、y軸交于點(diǎn)C、B.

(1)求出b、m的值;

(2)點(diǎn)Dx軸的正半軸上,若以點(diǎn)D、C、B組成的三角形與△OAB相似,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨時(shí)用的共享單車(chē)。某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車(chē)的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車(chē)費(fèi)按0.5元收取,每增加一次,當(dāng)次車(chē)費(fèi)就比上次車(chē)費(fèi)減少0.1元,第6次開(kāi)始,當(dāng)次用車(chē)免費(fèi)。具體收費(fèi)標(biāo)準(zhǔn)如下:

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車(chē)的意愿,得到如下數(shù)據(jù):

1)寫(xiě)出a、b的值。

2)已知該校有5100名師生,且A品牌共享單車(chē)投放該校一天的費(fèi)用為5800元。試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車(chē)能否獲利?說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng):第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第2次將點(diǎn)A1向右平移6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第3次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3則第6次移動(dòng)到點(diǎn)A6時(shí),點(diǎn)A6在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)是_____;按照這種規(guī)律移動(dòng)下去,至少移動(dòng)_____次后該點(diǎn)到原點(diǎn)的距離不小于41

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:數(shù)學(xué)課上,老師出示了這祥一個(gè)問(wèn)題:

如圖,在正方形ABCD中,點(diǎn)FAB上,點(diǎn)EBC延長(zhǎng)線(xiàn)上。且AF=CE,連接EF,過(guò)點(diǎn)DDHFE于點(diǎn)H,連接CH并延長(zhǎng)交BD于點(diǎn)0,∠BFE=75°.的值.某學(xué)習(xí)小組的同學(xué)經(jīng)過(guò)思考,交流了自己的想法:

小柏:通過(guò)觀察和度量,發(fā)現(xiàn)點(diǎn)H是線(xiàn)段EF的中點(diǎn)。

小吉:BFE=75°,說(shuō)明圖形中隱含著特殊角;

小亮:通過(guò)觀察和度量,發(fā)現(xiàn)COBD”;

小剛:題目中的條件是連接CH并延長(zhǎng)交BD于點(diǎn)O,所以CO平分∠BCD不是己知條件。不能由三線(xiàn)合一得到COBD”;

小杰:利用中點(diǎn)作輔助線(xiàn),直接或通過(guò)三角形全等,就能證出COBD,從而得到結(jié)論;……;

老師:延長(zhǎng)DHBC于點(diǎn)G,若刪除∠BFB=75°,保留原題其余條件,取AD中點(diǎn)M,連接MH,如果給出ABMH的值。那么可以求出GE的長(zhǎng)度”.

請(qǐng)回答:(1)證明FH=EH;

(2)的值;

(3)AB=4.MH=,則GE的長(zhǎng)度為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)都為a的正方形內(nèi)分別排列著一些大小相等的圓.

1)根據(jù)圖中的規(guī)律,第4個(gè)正方形內(nèi)圓的個(gè)數(shù)是   ,第n個(gè)正方形內(nèi)圓的個(gè)數(shù)是   

2)如果把正方形內(nèi)除去圓的部分都涂上陰影.

①用含a的代數(shù)式分別表示第1個(gè)正方形中和第3個(gè)正方形中陰影部分的面積.(結(jié)果保留π

②若a10,請(qǐng)直接寫(xiě)出第2014個(gè)正方形中陰影部分的面積   .(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)進(jìn)價(jià)為40元的某童裝每月的銷(xiāo)售量y(件)與售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,且相關(guān)信息如下:

售價(jià)x(元)

60

70

80

90

……

銷(xiāo)售量y(件)

280

260

240

220

……

1)求這個(gè)一次函數(shù)關(guān)系式;

2)售價(jià)為多少元時(shí),當(dāng)月的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在社會(huì)主義新農(nóng)村建設(shè)中,某鄉(xiāng)鎮(zhèn)決定對(duì)一段公路進(jìn)行改造,已知這項(xiàng)工程由甲工程隊(duì)單獨(dú)做需要40天完成;如果由乙工程先單獨(dú)做10天,那么剩下的工程還需要兩隊(duì)合做20天才能完成.

(1)求乙工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的天數(shù);

(2)求兩隊(duì)合作完成這項(xiàng)工程所需的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的點(diǎn)A(0,﹣2)、點(diǎn)B(3m,4m+1)(m﹣1),點(diǎn)C(6,2),則對(duì)角線(xiàn)BD的最小值是( 。

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案