【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )

A. 2 B. +2 C. 3 D. 2

【答案】C

【解析】分析: 先由∠B30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,得到AD=BD=2, 再根據(jù)∠C=90°,∠B30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所對的直角邊是斜邊的一半求得CD=1,從而求得BC的長度.

詳解: ∵△ABC折疊,點B與點A重合,折痕為DE,

∴AD=BD,B=∠CAD= 30°, ∠DEB=90°,

∴AD=BD=2, ∠CAD=30°,

∴CD=AD=1,

∴BC=BD+CD=2+1=3

故選:C.

點睛: 本題考查了翻折變換,主要利用了翻折前后對應(yīng)邊相等,此類題目,難點在于利用直角三角形中30°的角所對應(yīng)的直角邊是斜邊的一半來解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點依次編號為1,2,3,4,5,若從某一個頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次移位”,:小明在編號為2的頂點上時,那么他應(yīng)走2個邊長,即從2→3→4為第一次移位”,這時他到達編號為4的頂點,接下來他應(yīng)走4個邊長后從4→5→1→2→3為第二次移位若小明從編號為1的頂點開始,2020移位,則他所處頂點的編號為

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線的表達式為A,B的坐標分別為

(1,0),(0,2),直線AB與直線相交于點P

(1)求直線AB的表達式;

(2)求點P的坐標;

(3)若直線上存在一點C,使得APC的面積是APO的面積的2倍,直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點,且點A在點B的左側(cè),直線y=﹣x﹣1與拋物線交于A,C兩點,其中點C的橫坐標為2.

(1)求二次函數(shù)的解析式;

(2)P是線段AC上的一個動點,過點P作y軸的平行線交拋物線于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,所有小正方形的邊長都為1,A、BC都在格點上.

(1)過點C畫直線AB的平行線CD;

(2)過點B畫直線AC的垂線,并注明垂足為G;

(3)線段 的長度是點B到直線AC的距離;線段BC的長度是 的距離;

(4)因為直線外一點與直線上各點連接的所有線段中,垂線段最短,所以線段BC、BG的大小關(guān)系為:BC BG

(5)計算格點△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對a,bc,d).我們規(guī)定

a,bc,d=bcad

例如:(1,23,4=2×31×4=2

根據(jù)上述規(guī)定解決下列問題

1有理數(shù)對2,-33,-2=_______

2若有理數(shù)對(-3,2x11x+1=7,x=_______;

3當滿足等式(-3,2x1k,xk=52kx是整數(shù)時求整數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,點EF分別是AO、AD的中點,AB6cm,BC8cm,則△AEF的周長是( 。

A. 14cmB. 8cmC. 9cmD. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BAD、ABC的平分線AF、BG分別與線段CD交于點F、G,

AF與BG交于點E.

(1)求證:AFBG,DF=CG;

(2)若AB=10,AD=6,AF=8,求FG和BG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為

)請直接寫出袋子中白球的個數(shù).

)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

同步練習(xí)冊答案