【題目】某班同學為了解2019年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行整理如下:

月均用水量xt

頻數(shù)(戶)

頻率

6

0.12

0.24

16

0.32

10

0.20

4

2

0.04

請解答下列問題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;

3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?

【答案】112,0.08;(268%;(3)大約有120.

【解析】

1)根據(jù)0x≤5中頻數(shù)為6,頻率為0.12,則調(diào)查總戶數(shù)為6÷0.12=50,進而得出在5x≤10范圍內(nèi)的頻數(shù)以及在20x≤25范圍內(nèi)的頻率;
2)根據(jù)(1)中所求即可得出不超過15t的家庭總數(shù)即可求出,不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
3)根據(jù)樣本數(shù)據(jù)中超過20t的家庭數(shù),即可得出1000戶家庭超過20t的家庭數(shù).

1

如圖所示:根據(jù)0x≤5中頻數(shù)為6,頻率為0.12,
6÷0.12=50,50×0.24=12戶,4÷50=0.08,
故表格從上往下依次是:12戶和0.08;

2×100%=68%;

31000×0.08+0.04=120戶,
答:該小區(qū)月均用水量超過20t的家庭大約有120戶.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,四個頂點坐標分別為Am,n),B12),Cm+1,2),Dm+,n).求m,n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,放入6個形狀和大小都相同的小長方形后,還有一部分空余(陰影部分),已知小長方形的長為a,寬為b,且ab

1)用含a、b的代數(shù)式表示長方形ABCD的長AD和寬AB

2)用含ab的代數(shù)式表示陰影部分的面積(列式表示即可,不要求化簡).

3)若a7cm,b2cm,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCDBCx軸上,頂點Ay軸上,對角線AC所在的直線為y=+6,且AC=AB,若點P從點A出發(fā)以1cm/s的速度向終點O運動,同時點Q從點C出發(fā)以2cm/s的速度沿射線CB運動,當點P到達終點O時,點Q也隨之停止運動.設(shè)點P的運動時間為ts).

1)直接寫出頂點D的坐標(______,______),對角線的交點E的坐標(______,______);

2)求對角線BD的長;

3)是否存在t,使SPOQ=SABCD,若存在,請求出的t值;不存在說明理由.

4)在整個運動過程中,PQ的中點到原點O的最短距離是______cm,(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程ax2+bx10a≠0)有一根為x2019,則一元二次方程ax12+bx1)=1必有一根為( 。

A.B.2020C.2019D.2018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一元二次方程中,有著名的韋達定理:對于一元二次方程ax2+bx+c0a≠0),如果方程有兩個實數(shù)根x1,x2,那么x1+x2=﹣,x1x2(說明:定理成立的條件≥0).比如方程2x23x10中,17,所以該方程有兩個不等的實數(shù)解.記方程的兩根為x1,x2,那么x1+x2,x1x2=﹣,請根據(jù)閱讀材料解答下列各題:

1)已知方程x23x20的兩根為x1、x2,且x1x2,求下列各式的值:

x12+x22;②

2)已知x1,x2是一元二次方程4kx24kx+k+10的兩個實數(shù)根.

①是否存在實數(shù)k,使(2x1x2)(x12x2)=﹣成立?若存在,求出k的值;若不存在,請說明理由.

②求使的值為整數(shù)的實數(shù)k的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)拋物線x軸的交點分別為A、B(點A在點B的左側(cè)),頂點為Cab、c滿足,則稱該拋物線為“正定拋物線”;若a、bc滿足,則稱該拋物線為“負定拋物線”.特別地,若某拋物線既是“正定拋物線”又是“負定拋物線”,則稱該拋物線為“對稱拋物線”

(1)“正定拋物線”必經(jīng)過x軸上的定點______;“負定拋物線”必經(jīng)過x軸上的定點______

(2)若拋物線是“對稱拋物線”,且△ABC是等邊三角形,求此拋物線對應的函數(shù)表達式.

(3)若拋物線是“正定拋物線”,設(shè)此拋物線交y軸于點D,△BCD的面積為S,求Sb之間的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 , 中, ,線段在射線上,且,線段沿射線運動,開始時,點與點重合,點到達點時運動停止,過點,與射線相交于點,過點的垂線,與射線相交于點.設(shè),四邊形重疊部分的面積為關(guān)于的函數(shù)圖象如圖所示(其中時,函數(shù)的解析式不同)

(1)填空: 的長是 ;

(2)關(guān)于的函數(shù)解析式,并寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的對角線正方形.例如,圖①中正方形ABCD即為線段BD對角線正方形.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點P從點C出發(fā),沿折線CA﹣AB5cm/s的速度運動,當點P與點B不重合時,作線段PB對角線正方形,設(shè)點P的運動時間為t(s),線段PB對角線正方形的面積為S(cm2).

(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB對角線正方形”.

(2)當線段PB對角線正方形有兩邊同時落在△ABC的邊上時,求t的值.

(3)當點P沿折線CA﹣AB運動時,求St之間的函數(shù)關(guān)系式.

(4)在整個運動過程中,當線段PB對角線正方形至少有一個頂點落在∠A的平分線上時,直接寫出t的值.

查看答案和解析>>

同步練習冊答案