【題目】如圖,在等腰直角三角形ABD中,AD=BD,點(diǎn)FAD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)AACBF,交BF的延長(zhǎng)線于點(diǎn)E,交BD的延長(zhǎng)線于點(diǎn)C,則下列說(shuō)法錯(cuò)誤的是(

A.CD=DFB.AC=BFC.AD=BED.CAD+ABF=45°

【答案】C

【解析】

由余角的性質(zhì)可得CAD=∠CBE,然后根據(jù)ASA即可證明ADC≌△BDF,進(jìn)而可判斷AB兩項(xiàng),由AD=BDBFBE即可判斷C項(xiàng),由CAD+∠ABF=∠CBE+∠ABF=∠ABD即可判斷D選項(xiàng),進(jìn)而可得答案.

解:∵ADBCACBE,

ADB=ADC=90°,C+∠CAD=90°,C+∠CBE=90°,

CAD=∠CBE,

AD=BD,

ADC≌△BDFASA),

CD=DF,AC=BF,∴AB兩選項(xiàng)是正確的;

AD=BDBFBE,∴C選項(xiàng)是錯(cuò)誤的;

ABD是等腰直角三角形,

∴∠ABD=45°,

CAD+∠ABF=∠CBE+∠ABF=45°,選項(xiàng)D是正確的.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A市準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的提示牌和垃圾箱,若購(gòu)買(mǎi)2個(gè)提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是提示牌單價(jià)的3倍.

1)求提示牌和垃圾箱的單價(jià)各是多少元?

2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買(mǎi)提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,每村參加清理人數(shù)及總開(kāi)支如下表:

村莊

清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)/

清理捕魚(yú)網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱的人均支出費(fèi)用各是多少元;

(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開(kāi)支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚(yú)網(wǎng)箱和捕魚(yú)網(wǎng)箱,要使總支出不超過(guò)102000元,且清理養(yǎng)魚(yú)網(wǎng)箱人數(shù)小于清理捕魚(yú)網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式(組)并把解集在數(shù)軸上表示出來(lái)

122x3)<5x1);

21+x;

3)解不等式組把解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,筆直的公路上A、B兩點(diǎn)相距25kmC、D為兩村莊,DAAB于點(diǎn)A,CBAB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得CD兩村到收購(gòu)站E的距離相等,則收購(gòu)站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初二班同學(xué)從學(xué)校出發(fā)去某自然保護(hù)區(qū)研學(xué)旅行,一部分乘坐大客車先出發(fā),余下的幾人20分鐘后乘坐小轎車沿同一路線出行大客車中途停車等候,小轎車趕上來(lái)之后,大客車以出發(fā)時(shí)速度的繼續(xù)行駛,小轎車保持原速度不變小轎車司機(jī)因路線不熟錯(cuò)過(guò)了景點(diǎn)入口,再原路提速返回,恰好與大客車同時(shí)到達(dá)景點(diǎn)入口兩車距學(xué)校的路程單位:千米和行駛時(shí)間單位:分鐘之間的函數(shù)關(guān)系如圖所示.

請(qǐng)結(jié)合圖象解決下面問(wèn)題:

學(xué)校到景點(diǎn)的路程為______千米,大客車途中停留了______分鐘,______千米;

在小轎車司機(jī)駛過(guò)景點(diǎn)入口時(shí),大客車離景點(diǎn)入口還有多遠(yuǎn)?

若大客車一直以出發(fā)時(shí)的速度行駛,中途不再停車,那么小轎車折返后到達(dá)景點(diǎn)入口,需等待______分鐘,大客車才能到達(dá)景點(diǎn)入口.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC上,ABACBDADDC,將ACD沿AD折疊至AED,AEBC于點(diǎn)F

1)求∠C的度數(shù);

2)求證:BFCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=8,BC=6,矩形在直線上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置……以此類推,這樣連續(xù)旋轉(zhuǎn)2018次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路線之和是

查看答案和解析>>

同步練習(xí)冊(cè)答案