(2007•柳州)如圖所示,AB=AC,AB為⊙O的直徑,AC、BC分別交⊙O于E、D,連接ED、BE.
(1)試判斷DE與BD是否相等,并說明理由;
(2)如果BC=6,AB=5,求BE的長.

【答案】分析:(1)可通過連接AD,AD就是等腰三角形ABC底邊上的高,根據(jù)等腰三角形三線合一的特點(diǎn),可得出∠CAD=∠BAD,根據(jù)圓周角定理即可得出∠DEB=∠DBE,便可證得DE=DB.
(2)本題中由于BE⊥AC,那么BE就是三角形ABC中AC邊上的高,可用面積的不同表示方法得出AC•BE=CB•AD.進(jìn)而求出BE的長.
解答:解:(1)DE=BD
證明:連接AD,則AD⊥BC,
在等腰三角形ABC中,AD⊥BC,
∴∠CAD=∠BAD(等腰三角形三線合一),
=,
∴DE=BD;

(2)∵AB=5,BD=BC=3,
∴AD=4,
∵AB=AC=5,
∴AC•BE=CB•AD,
∴BE=4.8.
點(diǎn)評(píng):本題主要考查了等腰三角形的性質(zhì),圓周角定理等知識(shí)點(diǎn)的運(yùn)用,用等腰三角形三線合一的特點(diǎn)得出圓周角相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn).
(1)試判斷b與c的積是正數(shù)還是負(fù)數(shù),為什么?
(2)如果AB=4,且當(dāng)拋物線y=-x2+bx+c的圖象向左平移一個(gè)單位時(shí),其頂點(diǎn)在y軸上.
①求原拋物線的表達(dá)式;
②設(shè)P是線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸交原拋物線于E點(diǎn).問:是否存在P點(diǎn),使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西柳州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn).
(1)試判斷b與c的積是正數(shù)還是負(fù)數(shù),為什么?
(2)如果AB=4,且當(dāng)拋物線y=-x2+bx+c的圖象向左平移一個(gè)單位時(shí),其頂點(diǎn)在y軸上.
①求原拋物線的表達(dá)式;
②設(shè)P是線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸交原拋物線于E點(diǎn).問:是否存在P點(diǎn),使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西北海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn).
(1)試判斷b與c的積是正數(shù)還是負(fù)數(shù),為什么?
(2)如果AB=4,且當(dāng)拋物線y=-x2+bx+c的圖象向左平移一個(gè)單位時(shí),其頂點(diǎn)在y軸上.
①求原拋物線的表達(dá)式;
②設(shè)P是線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸交原拋物線于E點(diǎn).問:是否存在P點(diǎn),使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西北海市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•柳州)如圖所示的一塊長方體木頭,想象沿虛線所示位置截下去所得到的截面圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西北海市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•柳州)如圖所示,甲、乙、丙、丁四個(gè)長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個(gè)長方形面積的和是32cm2,四邊形ABCD的面積是20cm2,則甲、乙、丙、丁四個(gè)長方形周長的總和為    cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案