【題目】當(dāng)圍繞一點(diǎn)拼在一起的某種正多邊形內(nèi)角之和恰好是______時,就能鋪滿地面( )
A. 45° B. 90° C. 180° D. 360°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.
(1)折疊后,DC的對應(yīng)線段是 ,CF的對應(yīng)線段是 ;
(2)若∠1=50°,求∠2、∠3的度數(shù);
(3)若CD=4,AD=6,求CF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,BC=12cm,AD=8cm.點(diǎn)P從點(diǎn)B出發(fā),在線段BC上以每秒3cm的速度向點(diǎn)C勻速運(yùn)動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB,AC,AD于E,F(xiàn),H,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,點(diǎn)P與直線m同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒(t>0).
(1)連接DE、DF,當(dāng)t為何值時,四邊形AEDF為菱形?
(2)連接PE、PF,在整個運(yùn)動過程中,△PEF的面積是否存在最大值?若存在,試求當(dāng)△PEF的面積最大時,線段BP的長.
(3)是否存在某一時刻t,使點(diǎn)F在線段EP的中垂線上?若存在,請求出此時刻t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,2).
(1)將△ABC向右平移6個單位長度,再向下平移4個單位長度,得到△A'B′C′.請畫出平移后的△A′B′C′,并寫出點(diǎn)的坐標(biāo)A′、B、C′;
(2)求出△A′B′C′的面積;
(3)若連接AA′、CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對稱軸對稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時,求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動,點(diǎn)N在x軸上運(yùn)動,當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列推理正確的是( )
A. ∵等腰三角形是軸對稱圖形 ,又∵等腰三角形是等邊三角形,∴等邊三角形是軸對稱圖形
B. ∵軸對稱圖形是等腰三角形, 又∵等邊三角形是等腰三角形,∴等邊三角形是軸對稱圖形
C. ∵等腰三角形是軸對稱圖形 ,又∵等邊三角形是等腰三角形,∴等邊三角形是軸對稱圖形
D. ∵等邊三角形是等腰三角形, 又∵等邊三角形是軸對稱圖形,∴等腰三角形是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(2,2)、B( ,n).
(1)求這兩個函數(shù)解析式;
(2)將一次函數(shù)y=ax+b的圖象沿y軸向下平移m個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,E關(guān)于y軸對稱,且E在AC的垂直平分線上,已知點(diǎn)C(5,0).
(1)如果∠BAE=40°,那么∠C= °;
(2)如果△ABC的周長為13cm,AC=6cm,那么△ABE的周長= cm;
(3)AB+BO= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com