設(shè)A=x+y,其中x可取-1,2,y可取-1,-2,3.
(1)試求x值是奇數(shù)的概率.
(2)用樹狀圖或列表法求出A值是奇數(shù)的概率.
【答案】分析:(1)根據(jù)x可取-1,2,直接得出x值是奇數(shù)的概率;
(2)利用樹狀圖得出A的值的所有可能,即可得出是奇數(shù)的概率.
解答:解:(1)∵x可取-1,2,
∴x值是奇數(shù)的概率是:;
(2)如圖所示;
∴A=x+y值是奇數(shù)的概率為:=
點(diǎn)評(píng):此題主要考查了樹狀圖法求概率,根據(jù)已知畫出正確的樹狀圖是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)A=x+y,其中x可取-1、2,y可取-1、-2、3.
(1)求出A的所有等可能結(jié)果(用樹狀圖或列表法求解);
(2)試求A是正值的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•儀征市模擬)設(shè)M=x-y,其中x可取-1、2,y可取-1、-2、3.
(1)求出M的所有等可能結(jié)果(用樹狀圖或列表法求解);
(2)試求M是正值的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角板DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q.
(1)如圖,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證△APD∽△CDQ.此時(shí),AP•CQ=
8
8

(2)將三角板DEF由圖所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由.
(3)在(2)的條件下,設(shè)2<x<4,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.
(圖2,圖3供解題用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角板DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q.
(1)如圖1,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證△APD∽△CDQ.此時(shí)AP•CQ的值為
8
8
.將三角板DEF由圖1所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,則AP•CQ的值是否會(huì)改變?
答:
不會(huì)
不會(huì)
.(填“會(huì)”或“不會(huì)”)此時(shí)AP•CQ的值為
8
8
.(不必說明理由)
(2)在(1)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2、圖3供解題用)
(3)在(1)的條件下,PQ能否與AC平行?若能,求出y的值;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列各題.
(1)計(jì)算:a+(5a-3b)+2a+4b;
(2)先化簡,后求值:9ab+6b2-3(ab-
2
3
b2)-1
,其中a=
1
2
,b=-1;
(3)設(shè)A=x+y,其中x可取-1、2,y可取-1、-2、3.求出A的所有可能的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案