當(dāng),b=-1,時(shí),等于

[  ]

A.
B.
C.-2
D.
答案:D
解析:

原式

應(yīng)選D


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、△ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)E作BC的平行線,分別交射線AB、AC于點(diǎn)F、G,連接BE.
(1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí).
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),直接寫出(1)中的兩個(gè)結(jié)論是否成立;
(3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A,C分別在DG和DE上,連接AE,BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系,請(qǐng)直接寫出你得到的結(jié)論;
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖②,通過觀察或測(cè)量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說明理由;
(3)若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,當(dāng)AE為最大值時(shí),求AF的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是等邊三角形.
(1)求證:梯形ABCD是等腰梯形;
(2)動(dòng)點(diǎn)P、Q分別在線段BC和MC上運(yùn)動(dòng),且∠MPQ=60°保持不變.設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
(3)在(2)中:
①當(dāng)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)到何處時(shí),以點(diǎn)P、M和點(diǎn)A、B、C、D中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?并指出符合條件的平行四邊形的個(gè)數(shù);
②當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

27、閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”.
例如:如圖2,

邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB…連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”.
操作:如圖3,

如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)
k=
3
時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
5
時(shí),第一次出現(xiàn)△PQR的“三角形回歸”.
猜想:
我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
3
時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
n
時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•孝感)如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=-x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案