精英家教網 > 初中數學 > 題目詳情
如圖,在四邊形內取一點,與四邊形的四條邊可以組成_______個三角形.

 

答案:4
提示:

     有多少個邊就能組成多少個三角形

 


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關系.
第一步:數軸上兩點連線的中點表示的數.自己畫一個數軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數是
1
1
. 再試幾個,我們發(fā)現:數軸上連接兩點的線段的中點所表示的數是這兩點所表示數的平均數.
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)為便于探索,我們在第一象限內取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結論及梯形中位線的性質,我們可以得到點M的坐標是(
x1+x2
2
x1+x2
2
,
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結論是:平面直角坐標系中連接兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數.
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關系(如圖②)在平面直角坐標系中畫一個平行四邊形ABCD,設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
y2+y4
2
y2+y4
2
 ),經過比較,我們可以分別得出關于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的
和相等
和相等

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數y=
kx
在第一象限的圖象經過點D.
(1)求D點的坐標,以及反比例函數的解析式;
(2)若K是雙曲線上第一象限內的任意點,連接AK、BK,設四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應的K點橫坐標;并直接寫出S的取值范圍.
(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應點恰好落在雙曲線上的方法.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數y=數學公式在第一象限的圖象經過點D.
(1)求D點的坐標,以及反比例函數的解析式;
(2)若K是雙曲線上第一象限內的任意點,連接AK、BK,設四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應的K點橫坐標;并直接寫出S的取值范圍.
(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應點恰好落在雙曲線上的方法.

查看答案和解析>>

科目:初中數學 來源: 題型:

讓我們一起來探索平面直角坐標系中平行四邊形的頂點的坐標之間的關系。
第一步:數軸上兩點連線的中點表示的數
自己畫一個數軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數是                。 再試幾個,我們發(fā)現:
數軸上連結兩點的線段的中點所表示的數是這兩點所表示數的平均數。
第二步;平面直角坐標系中兩點連線的中點的坐標(如圖①)
為便于探索,我們在第一象限內取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結論及梯形中位線的性質,我們可以得到點M的坐標是(             ,                     )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結論是:平面直角坐標系中連結兩點的線段的中點的橫(縱)坐標等于這兩點的橫(縱)坐標的平均數。
    
圖①                    圖②
第三步:平面直角坐標系中平行四邊形的頂點坐標之間的關系(如圖②)
在平面直角坐標系中畫一個平行四邊形ABCD,設A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),則其對角線交點Q的坐標可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經過比較,我們可以分別得出關于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結論是:平面直角坐標系中平行四邊形的對角頂點的橫(縱)坐標的              。

查看答案和解析>>

科目:初中數學 來源:2011-2012學年浙江省杭州市蕭山區(qū)臨浦片九年級(上)月考數學試卷(12月份)(解析版) 題型:解答題

如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數y=在第一象限的圖象經過點D.
(1)求D點的坐標,以及反比例函數的解析式;
(2)若K是雙曲線上第一象限內的任意點,連接AK、BK,設四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應的K點橫坐標;并直接寫出S的取值范圍.
(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應點恰好落在雙曲線上的方法.

查看答案和解析>>

同步練習冊答案