如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙0,交BC于點(diǎn)D,連接AD,過(guò)點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.

(1)求證:EF是⊙0的切線.

(2)如果⊙0的半徑為5,sin∠ADE=,求BF的長(zhǎng).

考點(diǎn):

切線的判定;等腰三角形的性質(zhì);圓周角定理;解直角三角形.

分析:

(1)連結(jié)OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;

(2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計(jì)算出AD=8,在Rt△ADE中可計(jì)算出AE=,然后由OD∥AE,

得△FDO∽△FEA,再利用相似比可計(jì)算出BF.

解答:

(1)證明:連結(jié)OD,如圖,

∵AB為⊙0的直徑,

∴∠ADB=90°,

∴AD⊥BC,

∵AB=AC,

∴AD平分BC,即DB=DC,

∵OA=OB,

∴OD為△ABC的中位線,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

∴EF是⊙0的切線;

(2)解:∵∠DAC=∠DAB,

∴∠ADE=∠ABD,

在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,

∴AD=8,

在Rt△ADE中,sin∠ADE==,

∴AE=

∵OD∥AE,

∴△FDO∽△FEA,

=,即=

∴BF=

點(diǎn)評(píng):

本題考查了切線的判定定理:過(guò)半徑的外端點(diǎn)且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質(zhì)、圓周角定理和解直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案