【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.

【答案】(1)y=,y=x+;(2)3.

【解析】

(1)利用三角函數(shù)求得AM的長,C的坐標(biāo)即可求得,利用待定系數(shù)法求得反比例函數(shù)解析式,然后利用待定系數(shù)法求得一次函數(shù)的解析式;

(2)首先求得D的坐標(biāo),然后利用三角形的面積公式求解.

(1)∵在直角△ACM中,tanCAM==,CM=3,

AM=4,

OM=AM﹣OA=4﹣2=2.

n=2,

C的坐標(biāo)是(2,3).

把(2,3)代入y=m=6.

則反比例函數(shù)的解析式是y=

根據(jù)題意得

解得,

則一次函數(shù)的解析式是y=x+;

(2)在y=中令y=﹣3,則x=﹣2.

D的坐標(biāo)是(﹣2,﹣3).

AD=3,

SABD=×3×2=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方格紙中每個小方格都是邊長為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為格點(diǎn)多邊形

1)在圖1中確定格點(diǎn)D,并畫出一個以A、BC、D為頂點(diǎn)的四邊形,使其為軸對稱圖形(一種情況即可);

2)直接寫出圖2FGH的面積是   

3)在圖3中畫一個格點(diǎn)正方形,使其面積等于17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BCx軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為(  )

A. (﹣3,2 B. (﹣5, C. (﹣6, D. (﹣3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰RtABC中,D為斜邊AB的中點(diǎn),點(diǎn)EAC上,且∠EDC=72°,點(diǎn)FAB上,滿足DE=DF,則∠CEF的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在BC、CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)處,又將△CEF沿EF折疊,使點(diǎn)C落在射線EBˊAD的交點(diǎn)處,則的值( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a,0)、B(0b),且|a2|(b2a)20,點(diǎn)Px軸上一動點(diǎn),連接BP,在第一象限內(nèi)作BCABBCAB

(1) 求點(diǎn)A、B的坐標(biāo)

(2) 如圖1,連接CP.當(dāng)CPBC時,作CDBP于點(diǎn)D,求線段CD的長度

(3) 如圖2,在第一象限內(nèi)作BQBPBQBP,連接PQ.設(shè)P(p,0),直接寫出SPCQ_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=120°OP平分∠AOB,且OP=2.若點(diǎn)M,N分別在OA,OB上,且PMN為等邊三角形,則滿足上述條件的PMN有(

A.1B.2C.3D.3個以上

查看答案和解析>>

同步練習(xí)冊答案