閱讀下列材料,并解決后面的問題.

在銳角三角形ABC中,∠A,∠B,∠C的對邊分別是a,b,c.過A作AD⊥BC于D(如下圖所示),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有,,所以

即:在一個三角形中,各邊和它所對角的正弦的比相等.

(1)在銳角三角形中,若已知三個元素a,b,∠A,運用上述結論和有關定理就可以求出其余三個未知元素c,∠B,∠C,請你按照下列步驟填空,完成求解過程.

第一步 由條件a,b,∠A________求出∠B;

第二步 由條件∠A,∠B________求出∠C;

第三步 由條件________________求出c.

(2)一貨輪在C處測得燈塔A在貨輪北偏西30°的方向上,隨后貨輪以28.4海里/時的速度按北偏東45°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西70°的方向上(如下圖所示),求此時貨輪距燈塔A的距離AB.(結果精確到0.1海里,參考數(shù)據(jù):sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966)

答案:
解析:

  分析:(1)根據(jù)已知結論和三角形內(nèi)角和定理求解.(2)應用(1)的步驟求解,但要注意∠ABC的求法.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題,在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,則
(1)過點A作AD⊥BC于D(如圖1),
則在Rt△ABD中,AD=
 
;(限用a、b、c、∠A、∠B、∠C中的元素來表示)
在Rt△ACD中,AD=
 

 
=
 

 
=
 

同理最后可得,
 
=
 
=
 

(2)用尺規(guī)畫△ABC的外接圓⊙O,半徑為r(圖2),請你另用不同的方法證明以上結論;并寫出上述結論與△ABC外接圓直徑的關系.
(3)應用:△ABC中,若∠A=30°,∠B=45°,b=
2
,則a=
 
,外接圓半徑r=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c.過A作AD⊥BC于D(如圖),則sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,
b
sinB
=
c
sinC
.同理有
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC
…(*)
即:在一個三角形中,各邊和它所對角的正弦的比相等.
(1)在銳角三角形中,若已知三個元素a、b、∠A,運用上述結論(*)和有關定理就可以求出其余三個未知元素c、∠B、∠C,請你按照下列步驟填空,完成求解過程:
第一步:由條件a、b、∠A
用關系式
 
求出
∠B;
第二步:由條件∠A、∠B
用關系式
 
求出
∠C;
第三步:由條件
 
用關系式
 
求出
c.
(2)如圖,已知:∠A=60°,∠C=75°,a=6,運用上述結論(*)試求b.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c.過A作AD⊥BC于D(如圖),則sinB=
AD
c
,sinC=
AD
b
,即AD=csi精英家教網(wǎng)nB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC

同理有
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC
…(*)
即:在一個三角形中,各邊和它所對角的正弦的比相等.
(1)在銳角三角形中,若已知三個元素a、b、∠A,運用上述結論(*)和有關定理就可以
求出其余三個未知元素c、∠B、∠C,請你按照下列步驟填空,完成求解過程:
第一步:由條件a、b、∠A
用關系式
 
求出
∠B;
第二步:由條件∠A、∠B.
用關系式
 
求出
∠C;
第三步:由條件.
 
用關系式
 
求出
c.
(2)一貨貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以28.4海里/時的速度按北偏東45°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西70°的方向上(如圖),求此時貨輪距燈塔A的距離AB(結果精確精英家教網(wǎng)到0.1.參考數(shù)據(jù):sin40°=0.643,sin65°=0.90 6,sin70°=0.940,sin75°=0.966).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面給出的問題
例.給定二次函數(shù)y=(x-1)2+1,當t≤x≤t+1時,求y的函數(shù)值的最小值.
解:函數(shù)y=(x-1)2+1,其對稱軸方程為x=1,頂點坐標為(1,1),圖象開口向上.下面分類討論:

(1)如圖1所示,若頂點橫坐標在范圍t≤x≤t+1左側時,即有1<t.此時y隨x的增大而增大,當x=t時,函數(shù)取得最小值,y最小值=(t-1)2+1;
(2)如圖2所示,若頂點橫坐標在范圍t≤x≤t+1內(nèi)時,即有t≤1≤t+1,解這個不等式,即0≤t≤1.此時當x=1時,函數(shù)取得最小值,y最小值=1;
(3)如圖3所示,若頂點橫坐標在范圍t≤x≤t+1右側時,有t+1<1,解不等式即得t<0.此時Y隨X的增大而減小,當x=t+1時,函數(shù)取得最小值,y最小值=t2+1
綜上討論,當1<t時,函數(shù)取得最小值,y最小值=(t-1)2+1
此時當0≤t≤1時,函數(shù)取得最小值,y最小值=1.
當t<0時,函數(shù)取得最小值,y最小值=t2+1
根據(jù)上述材料,完成下列問題:
問題:求函數(shù)y=x2+2x+3在t≤x≤t+2時的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
a
sinA
=
b
sinB
,
所以
a
sinA
=
b
sinB
=
c
sinC

即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=
60°
60°
;AC=
20
6
20
6
;
(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,
6
≈2.449

查看答案和解析>>

同步練習冊答案