如圖①,在菱形ABCD和菱形BEFG中,點A、B、E在同一條直線上,P是線段DF的中點,連接PG,PC.若==
(1)請寫出線段PG與PC所滿足的關系;并加以證明.
(2)若將圖①中的菱形BEFG饒點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變,如圖②.那么你在(1)中得到的結論是否發(fā)生變化?若沒變化,直接寫出結論,若有變化,寫出變化的結果.
(3)若將圖①中的菱形BEFG饒點B順時針旋轉任意角度,原問題中的其他條件不變,請猜想(1)中的結論有沒有變化?

【答案】分析:(1)可通過構建全等三角形求解.延長GP交DC于H,可證△DHP和△PGF全等,已知的有DC∥GF,根據(jù)平行線間的內錯角相等可得出兩三角形中兩組對應的角相等,又有DP=PF,因此構成了全等三角形判定條件中的(AAS),得出兩三角形全等,于是△CHG就是等腰直角三角形且CP是底邊上的中線,根據(jù)等腰三角形三線合一的特點,即可得出CP⊥PG;
(2)方法同(1),只不過△CHG是個等腰三角形,得出頂角為120°,可根據(jù)三角函數(shù)來得出PG、CP的比例關系;
(3)經(jīng)過(1)(2)的解題過程,我們要構建出以CP為底邊中線的等腰三角形,那么可延長GP到H,使PH=PG,連接CH、DH,那么根據(jù)前兩問的解題過程,我們要求的是三角形CHG是個等腰三角形,關鍵是證△GFP≌△HDP,根據(jù)已知得出△HDC≌△GBC,然后得出即可.
解答:解:(1)延長GP交DC于H,
∵DC∥GF,
∴∠DHP=∠PGF,∠DPH=∠GPF,
∵DP=PF,
∴△DHP≌△PGF,
∴HD=GF,
∵四邊形ABCD和四邊形GFEB是菱形,
∴DC=CB,F(xiàn)G=GB,
∴DH=GB,
∴DC-DH=CB-GB,
∴CH=CG,
∴△CHG就是等腰三角形且CP是底邊上的中線,根據(jù)等腰三角形三線合一的特點,
即可得出CP⊥PG;
∴線段PG與PC的位置關系是PG⊥PC;

(2)線段PG與PC的位置關系是PG⊥PC;
證明:如圖②,延長GP到H,使PH=PG,
連接CH,CG,DH,
∵P是線段DF的中點,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
==,
∴∠ADC=∠ABC=60°,∠GBF=60°,
∵四邊形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,點A、B、F又在一條直線上,
∴∠FBC=120°,
∴∠HDC=∠CBG=60°,
∵四邊形BEFG是菱形,
∴GF=GB,
∴HD=GB,
即在△HDC與△GBC中,
,
∴△HDC≌△GBC(SAS),
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC.

(3)將圖①中的菱形BEFG饒點B順時針旋轉任意角度,
(1)中的結論沒有變化,PG⊥PC.
點評:此題主要考查了正方形,菱形的性質,以及全等三角形的判定等知識點,根據(jù)已知和所求的條件正確的構建出相關的全等三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,在菱形ABCD和菱形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.若∠ABC=∠BEF=60°,探究PG與PC的位置關系及
PG
PC
的值.
小聰同學的思路是:延長GP交DC于點H,構造全等三角形,經(jīng)過推理使問題得到解決.請你參考小聰同學的思路,探究并解決下列問題:
(1)寫出上面問題中線段PG與PC的位置關系及
PG
PC
的值;
(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結論是否發(fā)生變化?寫出你的猜想并加以證明;
(3)若圖1中∠ABC=∠BEF=2α(0°<α<90°),將菱形BEFG繞點B順時針旋轉任意角度,精英家教網(wǎng)原問題中的其他條件不變,請你直接寫出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,A,E,B,D在同一直線上,在△ABC與△DEF中,AB=DE,AC=DF,AC∥DF.求證:∠C=∠F.
(2)如圖2,在菱形ABCD中,∠A=60°,AB=4,O為對角線BD的中點,過O點作OE⊥AB,垂足為E.求線段BE的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•福州)如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•新鄉(xiāng)模擬)閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC,探究PG與PC的位置關系
小穎同學的思路是:延長GP交DC于點H,構造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小穎同學的思路,探究并解決下列問題:
(1)請你寫出上面問題中線段PG與PC的位置關系;
(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題申的其他條件不變(如圖2).你在(1)中得到的結論是否發(fā)生變化?寫出你的猜想并加以證明,

查看答案和解析>>

同步練習冊答案