(2012•樂山)如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,-n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m、n(m<n)分別是方程x2-2x-3=0的兩根.
(1)求拋物線的解析式;
(2)若點(diǎn)P為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.
①當(dāng)△OPC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
②求△BOD 面積的最大值,并寫出此時(shí)點(diǎn)D的坐標(biāo).
分析:(1)首先解方程得出A,B兩點(diǎn)的坐標(biāo),進(jìn)而利用待定系數(shù)法求出二次函數(shù)解析式即可;
(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當(dāng)OC=OP時(shí),當(dāng)OP=PC時(shí),點(diǎn)P在線段OC的中垂線上,當(dāng)OC=PC時(shí)分別求出x的值即可;
②利用S△BOD=S△ODQ+S△BDQ得出關(guān)于x的二次函數(shù),進(jìn)而得出最值即可.
解答:解(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3…(1分)
∴A(-1,-1),B(3,-3).
∵拋物線過原點(diǎn),設(shè)拋物線的解析式為y=ax2+bx(a≠0).
-1=a-b
-3=9a+3b

解得:
a=-
1
2
b=
1
2

∴拋物線的解析式為y=-
1
2
x2+
1
2
x
.…(4分)

(2)①設(shè)直線AB的解析式為y=kx+b.
-1=-k+b
-3=3k+b.

解得:
k=-
1
2
b=-
3
2
,
∴直線AB的解析式為y=-
1
2
x-
3
2

∴C點(diǎn)坐標(biāo)為(0,-
3
2
).…(6分)
∵直線OB過點(diǎn)O(0,0),B(3,-3),
∴直線OB的解析式為y=-x.
∵△OPC為等腰三角形,
∴OC=OP或OP=PC或OC=PC.
設(shè)P(x,-x),
(i)當(dāng)OC=OP時(shí),x2+(-x)2=
9
4

解得x1=
3
2
4
,x2=-
3
2
4
(舍去).
∴P1
3
2
4
-
3
2
4
).
(ii)當(dāng)OP=PC時(shí),點(diǎn)P在線段OC的中垂線上,
∴P2
3
4
,-
3
4
).
(iii)當(dāng)OC=PC時(shí),由x2+(-x+
3
2
)2=
9
4
,
解得x1=
3
2
,x2=0(舍去).
∴P3
3
2
,-
3
2
).
∴P點(diǎn)坐標(biāo)為P1
3
2
4
-
3
2
4
)或P2
3
4
,-
3
4
)或P3
3
2
,-
3
2
).…(9分)

②過點(diǎn)D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.
設(shè)Q(x,-x),D(x,-
1
2
x2+
1
2
x
).
S△BOD=S△ODQ+S△BDQ=
1
2
DQ•OG+
1
2
DQ•GH,
=
1
2
DQ(OG+GH),
=
1
2
[x+(-
1
2
x2+
1
2
x)]×3
,
=-
3
4
(x-
3
2
)2+
27
16
,
∵0<x<3,
∴當(dāng)x=
3
2
時(shí),S取得最大值為
27
16
,此時(shí)D(
3
2
,-
3
8
).…(13分)
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用以及等腰三角形的性質(zhì)和三角形面積求法等知識(shí),求面積最值經(jīng)常利用二次函數(shù)的最值求法得出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,A、B兩點(diǎn)在數(shù)軸上表示的數(shù)分別為a、b,下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為
2

其中正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,⊙O是四邊形ABCD的內(nèi)切圓,E、F、G、H是切點(diǎn),點(diǎn)P是優(yōu)弧
EFH
上異于E、H的點(diǎn).若∠A=50°,則∠EPH=
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20
3
千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):
2
≈1.414
3
≈1.732

查看答案和解析>>

同步練習(xí)冊答案